Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11945 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 11964 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 11890 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 (class class class)co 7252 1c1 10778 + caddc 10780 ℕcn 11878 5c5 11936 6c6 11937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 ax-1cn 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 |
This theorem is referenced by: 7nn 11970 6nn0 12159 ef01bndlem 15796 sin01bnd 15797 cos01bnd 15798 6gcd4e2 16149 6lcm4e12 16224 83prm 16727 139prm 16728 163prm 16729 prmo6 16734 vscandx 16930 vscaid 16931 lmodstr 16936 ipsstr 16946 lt6abl 19386 psrvalstr 21004 opsrvscaOLD 21144 tngvscaOLD 23689 sincos3rdpi 25553 1cubrlem 25871 quart1cl 25884 quart1lem 25885 quart1 25886 log2ub 25979 log2le1 25980 basellem5 26114 basellem8 26117 basellem9 26118 ppiublem1 26230 ppiublem2 26231 ppiub 26232 bpos1 26311 bposlem9 26320 itvndx 26678 itvid 26680 slotsinbpsd 26682 trkgstr 26684 ttgval 27115 ttglemOLD 27117 ttgvscaOLD 27124 ttgdsOLD 27126 eengstr 27226 ex-cnv 28677 ex-dm 28679 ex-dvds 28696 ex-gcd 28697 ex-lcm 28698 resvvscaOLD 31414 hgt750lem 32506 60gcd6e6 39919 60gcd7e1 39920 12lcm5e60 39923 60lcm6e60 39924 60lcm7e420 39925 lcm6un 39933 lcmineqlem 39967 3lexlogpow5ineq1 39969 aks4d1p1p5 39989 aks4d1p1 39990 rmydioph 40724 expdiophlem2 40732 algstr 40890 mnringvscadOLD 41705 139prmALT 44909 31prm 44910 127prm 44912 6even 45024 gbowge7 45076 stgoldbwt 45089 sbgoldbwt 45090 mogoldbb 45098 sbgoldbo 45100 nnsum3primesle9 45107 nnsum4primeseven 45113 wtgoldbnnsum4prm 45115 bgoldbnnsum3prm 45117 zlmodzxzequa 45698 zlmodzxznm 45699 zlmodzxzequap 45701 zlmodzxzldeplem3 45704 zlmodzxzldep 45706 ldepsnlinclem2 45708 ldepsnlinc 45710 |
Copyright terms: Public domain | W3C validator |