![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12360 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 12379 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 5c5 12351 6c6 12352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 |
This theorem is referenced by: 7nn 12385 6nn0 12574 ef01bndlem 16232 sin01bnd 16233 cos01bnd 16234 6gcd4e2 16585 6lcm4e12 16663 83prm 17170 139prm 17171 163prm 17172 prmo6 17177 vscandx 17378 vscaid 17379 lmodstr 17384 ipsstr 17395 lt6abl 19937 psrvalstr 21959 opsrvscaOLD 22099 tngvscaOLD 24686 sincos3rdpi 26577 1cubrlem 26902 quart1cl 26915 quart1lem 26916 quart1 26917 log2ub 27010 log2le1 27011 basellem5 27146 basellem8 27149 basellem9 27150 ppiublem1 27264 ppiublem2 27265 ppiub 27266 bpos1 27345 bposlem9 27354 itvndx 28463 itvid 28465 slotsinbpsd 28467 lngndxnitvndx 28469 trkgstr 28470 ttgvalOLD 28902 ttglemOLD 28904 ttgvscaOLD 28911 ttgdsOLD 28913 eengstr 29013 ex-cnv 30469 ex-dm 30471 ex-dvds 30488 ex-gcd 30489 ex-lcm 30490 resvvscaOLD 33329 hgt750lem 34628 60gcd6e6 41961 60gcd7e1 41962 12lcm5e60 41965 60lcm6e60 41966 60lcm7e420 41967 lcm6un 41975 lcmineqlem 42009 3lexlogpow5ineq1 42011 aks4d1p1p5 42032 aks4d1p1 42033 rmydioph 42971 expdiophlem2 42979 algstr 43134 mnringvscadOLD 44194 139prmALT 47470 31prm 47471 127prm 47473 6even 47585 gbowge7 47637 stgoldbwt 47650 sbgoldbwt 47651 mogoldbb 47659 sbgoldbo 47661 nnsum3primesle9 47668 nnsum4primeseven 47674 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 zlmodzxzequa 48225 zlmodzxznm 48226 zlmodzxzequap 48228 zlmodzxzldeplem3 48231 zlmodzxzldep 48233 ldepsnlinclem2 48235 ldepsnlinc 48237 |
Copyright terms: Public domain | W3C validator |