| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12187 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12206 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12132 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 5c5 12178 6c6 12179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 |
| This theorem is referenced by: 7nn 12212 6nn0 12397 ef01bndlem 16088 sin01bnd 16089 cos01bnd 16090 6gcd4e2 16444 6lcm4e12 16522 83prm 17029 139prm 17030 163prm 17031 prmo6 17036 vscandx 17218 vscaid 17219 lmodstr 17224 ipsstr 17235 lt6abl 19802 psrvalstr 21848 sincos3rdpi 26448 1cubrlem 26773 quart1cl 26786 quart1lem 26787 quart1 26788 log2ub 26881 log2le1 26882 basellem5 27017 basellem8 27020 basellem9 27021 ppiublem1 27135 ppiublem2 27136 ppiub 27137 bpos1 27216 bposlem9 27225 itvndx 28410 itvid 28412 slotsinbpsd 28414 lngndxnitvndx 28416 trkgstr 28417 eengstr 28953 ex-cnv 30409 ex-dm 30411 ex-dvds 30428 ex-gcd 30429 ex-lcm 30430 hgt750lem 34656 60gcd6e6 42037 60gcd7e1 42038 12lcm5e60 42041 60lcm6e60 42042 60lcm7e420 42043 lcm6un 42051 lcmineqlem 42085 3lexlogpow5ineq1 42087 aks4d1p1p5 42108 aks4d1p1 42109 6ne0 42294 rmydioph 43047 expdiophlem2 43055 algstr 43206 139prmALT 47627 31prm 47628 127prm 47630 6even 47742 gbowge7 47794 stgoldbwt 47807 sbgoldbwt 47808 mogoldbb 47816 sbgoldbo 47818 nnsum3primesle9 47825 nnsum4primeseven 47831 wtgoldbnnsum4prm 47833 bgoldbnnsum3prm 47835 zlmodzxzequa 48528 zlmodzxznm 48529 zlmodzxzequap 48531 zlmodzxzldeplem3 48534 zlmodzxzldep 48536 ldepsnlinclem2 48538 ldepsnlinc 48540 |
| Copyright terms: Public domain | W3C validator |