| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12229 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12248 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 5c5 12220 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 7nn 12254 6nn0 12439 ef01bndlem 16128 sin01bnd 16129 cos01bnd 16130 6gcd4e2 16484 6lcm4e12 16562 83prm 17069 139prm 17070 163prm 17071 prmo6 17076 vscandx 17258 vscaid 17259 lmodstr 17264 ipsstr 17275 lt6abl 19801 psrvalstr 21801 sincos3rdpi 26402 1cubrlem 26727 quart1cl 26740 quart1lem 26741 quart1 26742 log2ub 26835 log2le1 26836 basellem5 26971 basellem8 26974 basellem9 26975 ppiublem1 27089 ppiublem2 27090 ppiub 27091 bpos1 27170 bposlem9 27179 itvndx 28340 itvid 28342 slotsinbpsd 28344 lngndxnitvndx 28346 trkgstr 28347 eengstr 28883 ex-cnv 30339 ex-dm 30341 ex-dvds 30358 ex-gcd 30359 ex-lcm 30360 hgt750lem 34615 60gcd6e6 41965 60gcd7e1 41966 12lcm5e60 41969 60lcm6e60 41970 60lcm7e420 41971 lcm6un 41979 lcmineqlem 42013 3lexlogpow5ineq1 42015 aks4d1p1p5 42036 aks4d1p1 42037 6ne0 42222 rmydioph 42976 expdiophlem2 42984 algstr 43135 139prmALT 47570 31prm 47571 127prm 47573 6even 47685 gbowge7 47737 stgoldbwt 47750 sbgoldbwt 47751 mogoldbb 47759 sbgoldbo 47761 nnsum3primesle9 47768 nnsum4primeseven 47774 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 zlmodzxzequa 48458 zlmodzxznm 48459 zlmodzxzequap 48461 zlmodzxzldeplem3 48464 zlmodzxzldep 48466 ldepsnlinclem2 48468 ldepsnlinc 48470 |
| Copyright terms: Public domain | W3C validator |