| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12214 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12233 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12159 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12147 5c5 12205 6c6 12206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 |
| This theorem is referenced by: 7nn 12239 6nn0 12424 ef01bndlem 16112 sin01bnd 16113 cos01bnd 16114 6gcd4e2 16468 6lcm4e12 16546 83prm 17053 139prm 17054 163prm 17055 prmo6 17060 vscandx 17242 vscaid 17243 lmodstr 17248 ipsstr 17259 lt6abl 19793 psrvalstr 21842 sincos3rdpi 26443 1cubrlem 26768 quart1cl 26781 quart1lem 26782 quart1 26783 log2ub 26876 log2le1 26877 basellem5 27012 basellem8 27015 basellem9 27016 ppiublem1 27130 ppiublem2 27131 ppiub 27132 bpos1 27211 bposlem9 27220 itvndx 28401 itvid 28403 slotsinbpsd 28405 lngndxnitvndx 28407 trkgstr 28408 eengstr 28944 ex-cnv 30400 ex-dm 30402 ex-dvds 30419 ex-gcd 30420 ex-lcm 30421 hgt750lem 34638 60gcd6e6 41997 60gcd7e1 41998 12lcm5e60 42001 60lcm6e60 42002 60lcm7e420 42003 lcm6un 42011 lcmineqlem 42045 3lexlogpow5ineq1 42047 aks4d1p1p5 42068 aks4d1p1 42069 6ne0 42254 rmydioph 43007 expdiophlem2 43015 algstr 43166 139prmALT 47600 31prm 47601 127prm 47603 6even 47715 gbowge7 47767 stgoldbwt 47780 sbgoldbwt 47781 mogoldbb 47789 sbgoldbo 47791 nnsum3primesle9 47798 nnsum4primeseven 47804 wtgoldbnnsum4prm 47806 bgoldbnnsum3prm 47808 zlmodzxzequa 48501 zlmodzxznm 48502 zlmodzxzequap 48504 zlmodzxzldeplem3 48507 zlmodzxzldep 48509 ldepsnlinclem2 48511 ldepsnlinc 48513 |
| Copyright terms: Public domain | W3C validator |