| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12253 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12272 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 7nn 12278 6nn0 12463 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 6gcd4e2 16508 6lcm4e12 16586 83prm 17093 139prm 17094 163prm 17095 prmo6 17100 vscandx 17282 vscaid 17283 lmodstr 17288 ipsstr 17299 lt6abl 19825 psrvalstr 21825 sincos3rdpi 26426 1cubrlem 26751 quart1cl 26764 quart1lem 26765 quart1 26766 log2ub 26859 log2le1 26860 basellem5 26995 basellem8 26998 basellem9 26999 ppiublem1 27113 ppiublem2 27114 ppiub 27115 bpos1 27194 bposlem9 27203 itvndx 28364 itvid 28366 slotsinbpsd 28368 lngndxnitvndx 28370 trkgstr 28371 eengstr 28907 ex-cnv 30366 ex-dm 30368 ex-dvds 30385 ex-gcd 30386 ex-lcm 30387 hgt750lem 34642 60gcd6e6 41992 60gcd7e1 41993 12lcm5e60 41996 60lcm6e60 41997 60lcm7e420 41998 lcm6un 42006 lcmineqlem 42040 3lexlogpow5ineq1 42042 aks4d1p1p5 42063 aks4d1p1 42064 6ne0 42249 rmydioph 43003 expdiophlem2 43011 algstr 43162 139prmALT 47597 31prm 47598 127prm 47600 6even 47712 gbowge7 47764 stgoldbwt 47777 sbgoldbwt 47778 mogoldbb 47786 sbgoldbo 47788 nnsum3primesle9 47795 nnsum4primeseven 47801 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 zlmodzxzequa 48485 zlmodzxznm 48486 zlmodzxzequap 48488 zlmodzxzldeplem3 48491 zlmodzxzldep 48493 ldepsnlinclem2 48495 ldepsnlinc 48497 |
| Copyright terms: Public domain | W3C validator |