Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11741 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 11760 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 11686 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2848 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 (class class class)co 7150 1c1 10576 + caddc 10578 ℕcn 11674 5c5 11732 6c6 11733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 ax-1cn 10633 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 |
This theorem is referenced by: 7nn 11766 6nn0 11955 ef01bndlem 15585 sin01bnd 15586 cos01bnd 15587 6gcd4e2 15937 6lcm4e12 16012 83prm 16514 139prm 16515 163prm 16516 prmo6 16521 vscandx 16692 vscaid 16693 lmodstr 16694 ipsstr 16701 ressvsca 16709 lt6abl 19083 psrvalstr 20678 opsrvsca 20813 tngvsca 23348 sincos3rdpi 25208 1cubrlem 25526 quart1cl 25539 quart1lem 25540 quart1 25541 log2ub 25634 log2le1 25635 basellem5 25769 basellem8 25772 basellem9 25773 ppiublem1 25885 ppiublem2 25886 ppiub 25887 bpos1 25966 bposlem9 25975 itvndx 26333 itvid 26335 trkgstr 26337 ttgval 26768 ttglem 26769 ttgvsca 26773 ttgds 26774 eengstr 26873 ex-cnv 28321 ex-dm 28323 ex-dvds 28340 ex-gcd 28341 ex-lcm 28342 resvvsca 31059 hgt750lem 32150 60gcd6e6 39571 60gcd7e1 39572 12lcm5e60 39575 60lcm6e60 39576 60lcm7e420 39577 lcm6un 39585 lcmineqlem 39619 3lexlogpow5ineq1 39621 aks4d1p1p5 39641 aks4d1p1 39642 rmydioph 40328 expdiophlem2 40336 algstr 40494 mnringvscad 41306 139prmALT 44481 31prm 44482 127prm 44484 6even 44596 gbowge7 44648 stgoldbwt 44661 sbgoldbwt 44662 mogoldbb 44670 sbgoldbo 44672 nnsum3primesle9 44679 nnsum4primeseven 44685 wtgoldbnnsum4prm 44687 bgoldbnnsum3prm 44689 zlmodzxzequa 45270 zlmodzxznm 45271 zlmodzxzequap 45273 zlmodzxzldeplem3 45276 zlmodzxzldep 45278 ldepsnlinclem2 45280 ldepsnlinc 45282 |
Copyright terms: Public domain | W3C validator |