| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12203 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12222 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 5c5 12194 6c6 12195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 |
| This theorem is referenced by: 7nn 12228 6nn0 12413 ef01bndlem 16100 sin01bnd 16101 cos01bnd 16102 6gcd4e2 16456 6lcm4e12 16534 83prm 17041 139prm 17042 163prm 17043 prmo6 17048 vscandx 17230 vscaid 17231 lmodstr 17236 ipsstr 17247 lt6abl 19815 psrvalstr 21863 sincos3rdpi 26473 1cubrlem 26798 quart1cl 26811 quart1lem 26812 quart1 26813 log2ub 26906 log2le1 26907 basellem5 27042 basellem8 27045 basellem9 27046 ppiublem1 27160 ppiublem2 27161 ppiub 27162 bpos1 27241 bposlem9 27250 itvndx 28435 itvid 28437 slotsinbpsd 28439 lngndxnitvndx 28441 trkgstr 28442 eengstr 28979 ex-cnv 30438 ex-dm 30440 ex-dvds 30457 ex-gcd 30458 ex-lcm 30459 hgt750lem 34736 60gcd6e6 42170 60gcd7e1 42171 12lcm5e60 42174 60lcm6e60 42175 60lcm7e420 42176 lcm6un 42184 lcmineqlem 42218 3lexlogpow5ineq1 42220 aks4d1p1p5 42241 aks4d1p1 42242 6ne0 42431 rmydioph 43171 expdiophlem2 43179 algstr 43330 139prmALT 47758 31prm 47759 127prm 47761 6even 47873 gbowge7 47925 stgoldbwt 47938 sbgoldbwt 47939 mogoldbb 47947 sbgoldbo 47949 nnsum3primesle9 47956 nnsum4primeseven 47962 wtgoldbnnsum4prm 47964 bgoldbnnsum3prm 47966 zlmodzxzequa 48658 zlmodzxznm 48659 zlmodzxzequap 48661 zlmodzxzldeplem3 48664 zlmodzxzldep 48666 ldepsnlinclem2 48668 ldepsnlinc 48670 |
| Copyright terms: Public domain | W3C validator |