Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12040 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 12059 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 5c5 12031 6c6 12032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 |
This theorem is referenced by: 7nn 12065 6nn0 12254 ef01bndlem 15893 sin01bnd 15894 cos01bnd 15895 6gcd4e2 16246 6lcm4e12 16321 83prm 16824 139prm 16825 163prm 16826 prmo6 16831 vscandx 17029 vscaid 17030 lmodstr 17035 ipsstr 17046 lt6abl 19496 psrvalstr 21119 opsrvscaOLD 21259 tngvscaOLD 23808 sincos3rdpi 25673 1cubrlem 25991 quart1cl 26004 quart1lem 26005 quart1 26006 log2ub 26099 log2le1 26100 basellem5 26234 basellem8 26237 basellem9 26238 ppiublem1 26350 ppiublem2 26351 ppiub 26352 bpos1 26431 bposlem9 26440 itvndx 26798 itvid 26800 slotsinbpsd 26802 lngndxnitvndx 26804 trkgstr 26805 ttgvalOLD 27237 ttglemOLD 27239 ttgvscaOLD 27246 ttgdsOLD 27248 eengstr 27348 ex-cnv 28801 ex-dm 28803 ex-dvds 28820 ex-gcd 28821 ex-lcm 28822 resvvscaOLD 31537 hgt750lem 32631 60gcd6e6 40012 60gcd7e1 40013 12lcm5e60 40016 60lcm6e60 40017 60lcm7e420 40018 lcm6un 40026 lcmineqlem 40060 3lexlogpow5ineq1 40062 aks4d1p1p5 40083 aks4d1p1 40084 rmydioph 40836 expdiophlem2 40844 algstr 41002 mnringvscadOLD 41843 139prmALT 45048 31prm 45049 127prm 45051 6even 45163 gbowge7 45215 stgoldbwt 45228 sbgoldbwt 45229 mogoldbb 45237 sbgoldbo 45239 nnsum3primesle9 45246 nnsum4primeseven 45252 wtgoldbnnsum4prm 45254 bgoldbnnsum3prm 45256 zlmodzxzequa 45837 zlmodzxznm 45838 zlmodzxzequap 45840 zlmodzxzldeplem3 45843 zlmodzxzldep 45845 ldepsnlinclem2 45847 ldepsnlinc 45849 |
Copyright terms: Public domain | W3C validator |