| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12260 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12279 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 5c5 12251 6c6 12252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 |
| This theorem is referenced by: 7nn 12285 6nn0 12470 ef01bndlem 16159 sin01bnd 16160 cos01bnd 16161 6gcd4e2 16515 6lcm4e12 16593 83prm 17100 139prm 17101 163prm 17102 prmo6 17107 vscandx 17289 vscaid 17290 lmodstr 17295 ipsstr 17306 lt6abl 19832 psrvalstr 21832 sincos3rdpi 26433 1cubrlem 26758 quart1cl 26771 quart1lem 26772 quart1 26773 log2ub 26866 log2le1 26867 basellem5 27002 basellem8 27005 basellem9 27006 ppiublem1 27120 ppiublem2 27121 ppiub 27122 bpos1 27201 bposlem9 27210 itvndx 28371 itvid 28373 slotsinbpsd 28375 lngndxnitvndx 28377 trkgstr 28378 eengstr 28914 ex-cnv 30373 ex-dm 30375 ex-dvds 30392 ex-gcd 30393 ex-lcm 30394 hgt750lem 34649 60gcd6e6 41999 60gcd7e1 42000 12lcm5e60 42003 60lcm6e60 42004 60lcm7e420 42005 lcm6un 42013 lcmineqlem 42047 3lexlogpow5ineq1 42049 aks4d1p1p5 42070 aks4d1p1 42071 6ne0 42256 rmydioph 43010 expdiophlem2 43018 algstr 43169 139prmALT 47601 31prm 47602 127prm 47604 6even 47716 gbowge7 47768 stgoldbwt 47781 sbgoldbwt 47782 mogoldbb 47790 sbgoldbo 47792 nnsum3primesle9 47799 nnsum4primeseven 47805 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 zlmodzxzequa 48489 zlmodzxznm 48490 zlmodzxzequap 48492 zlmodzxzldeplem3 48495 zlmodzxzldep 48497 ldepsnlinclem2 48499 ldepsnlinc 48501 |
| Copyright terms: Public domain | W3C validator |