| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version | ||
| Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 6nn | ⊢ 6 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12305 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5nn 12324 | . . 3 ⊢ 5 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 6 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 5c5 12296 6c6 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 |
| This theorem is referenced by: 7nn 12330 6nn0 12520 ef01bndlem 16200 sin01bnd 16201 cos01bnd 16202 6gcd4e2 16555 6lcm4e12 16633 83prm 17140 139prm 17141 163prm 17142 prmo6 17147 vscandx 17331 vscaid 17332 lmodstr 17337 ipsstr 17348 lt6abl 19874 psrvalstr 21874 sincos3rdpi 26476 1cubrlem 26801 quart1cl 26814 quart1lem 26815 quart1 26816 log2ub 26909 log2le1 26910 basellem5 27045 basellem8 27048 basellem9 27049 ppiublem1 27163 ppiublem2 27164 ppiub 27165 bpos1 27244 bposlem9 27253 itvndx 28362 itvid 28364 slotsinbpsd 28366 lngndxnitvndx 28368 trkgstr 28369 eengstr 28905 ex-cnv 30364 ex-dm 30366 ex-dvds 30383 ex-gcd 30384 ex-lcm 30385 hgt750lem 34629 60gcd6e6 41963 60gcd7e1 41964 12lcm5e60 41967 60lcm6e60 41968 60lcm7e420 41969 lcm6un 41977 lcmineqlem 42011 3lexlogpow5ineq1 42013 aks4d1p1p5 42034 aks4d1p1 42035 6ne0 42258 rmydioph 42985 expdiophlem2 42993 algstr 43144 139prmALT 47558 31prm 47559 127prm 47561 6even 47673 gbowge7 47725 stgoldbwt 47738 sbgoldbwt 47739 mogoldbb 47747 sbgoldbo 47749 nnsum3primesle9 47756 nnsum4primeseven 47762 wtgoldbnnsum4prm 47764 bgoldbnnsum3prm 47766 zlmodzxzequa 48420 zlmodzxznm 48421 zlmodzxzequap 48423 zlmodzxzldeplem3 48426 zlmodzxzldep 48428 ldepsnlinclem2 48430 ldepsnlinc 48432 |
| Copyright terms: Public domain | W3C validator |