![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6nn | Structured version Visualization version GIF version |
Description: 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
6nn | ⊢ 6 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12330 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5nn 12349 | . . 3 ⊢ 5 ∈ ℕ | |
3 | peano2nn 12275 | . . 3 ⊢ (5 ∈ ℕ → (5 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (5 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 6 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 ℕcn 12263 5c5 12321 6c6 12322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 |
This theorem is referenced by: 7nn 12355 6nn0 12544 ef01bndlem 16216 sin01bnd 16217 cos01bnd 16218 6gcd4e2 16571 6lcm4e12 16649 83prm 17156 139prm 17157 163prm 17158 prmo6 17163 vscandx 17364 vscaid 17365 lmodstr 17370 ipsstr 17381 lt6abl 19927 psrvalstr 21953 opsrvscaOLD 22093 tngvscaOLD 24680 sincos3rdpi 26573 1cubrlem 26898 quart1cl 26911 quart1lem 26912 quart1 26913 log2ub 27006 log2le1 27007 basellem5 27142 basellem8 27145 basellem9 27146 ppiublem1 27260 ppiublem2 27261 ppiub 27262 bpos1 27341 bposlem9 27350 itvndx 28459 itvid 28461 slotsinbpsd 28463 lngndxnitvndx 28465 trkgstr 28466 ttgvalOLD 28898 ttglemOLD 28900 ttgvscaOLD 28907 ttgdsOLD 28909 eengstr 29009 ex-cnv 30465 ex-dm 30467 ex-dvds 30484 ex-gcd 30485 ex-lcm 30486 resvvscaOLD 33343 hgt750lem 34644 60gcd6e6 41985 60gcd7e1 41986 12lcm5e60 41989 60lcm6e60 41990 60lcm7e420 41991 lcm6un 41999 lcmineqlem 42033 3lexlogpow5ineq1 42035 aks4d1p1p5 42056 aks4d1p1 42057 rmydioph 43002 expdiophlem2 43010 algstr 43161 mnringvscadOLD 44220 139prmALT 47520 31prm 47521 127prm 47523 6even 47635 gbowge7 47687 stgoldbwt 47700 sbgoldbwt 47701 mogoldbb 47709 sbgoldbo 47711 nnsum3primesle9 47718 nnsum4primeseven 47724 wtgoldbnnsum4prm 47726 bgoldbnnsum3prm 47728 zlmodzxzequa 48341 zlmodzxznm 48342 zlmodzxzequap 48344 zlmodzxzldeplem3 48347 zlmodzxzldep 48349 ldepsnlinclem2 48351 ldepsnlinc 48353 |
Copyright terms: Public domain | W3C validator |