| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version | ||
| Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p2e7 | ⊢ (5 + 2) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12303 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7416 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
| 3 | 5cn 12328 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 4 | ax-1cn 11187 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11245 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2761 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
| 7 | df-6 12307 | . . . 4 ⊢ 6 = (5 + 1) | |
| 8 | 7 | oveq1i 7415 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2761 | . 2 ⊢ (5 + 2) = (6 + 1) |
| 10 | df-7 12308 | . 2 ⊢ 7 = (6 + 1) | |
| 11 | 9, 10 | eqtr4i 2761 | 1 ⊢ (5 + 2) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 5c5 12298 6c6 12299 7c7 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 ax-addass 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 |
| This theorem is referenced by: 5p3e8 12397 17prm 17136 prmlem2 17139 37prm 17140 317prm 17145 1259lem1 17150 1259lem2 17151 1259lem4 17153 2503lem2 17157 4001lem1 17160 4001lem4 17163 log2ub 26911 bposlem8 27254 aks4d1p1p4 42084 aks4d1p1p7 42087 ex-decpmul 42355 resqrtvalex 43669 imsqrtvalex 43670 fmtno5lem2 47568 257prm 47575 127prm 47613 |
| Copyright terms: Public domain | W3C validator |