Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version |
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p2e7 | ⊢ (5 + 2) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12086 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7318 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
3 | 5cn 12111 | . . . . 5 ⊢ 5 ∈ ℂ | |
4 | ax-1cn 10979 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11035 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2767 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
7 | df-6 12090 | . . . 4 ⊢ 6 = (5 + 1) | |
8 | 7 | oveq1i 7317 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
9 | 6, 8 | eqtr4i 2767 | . 2 ⊢ (5 + 2) = (6 + 1) |
10 | df-7 12091 | . 2 ⊢ 7 = (6 + 1) | |
11 | 9, 10 | eqtr4i 2767 | 1 ⊢ (5 + 2) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 1c1 10922 + caddc 10924 2c2 12078 5c5 12081 6c6 12082 7c7 12083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-1cn 10979 ax-addcl 10981 ax-addass 10986 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 |
This theorem is referenced by: 5p3e8 12180 17prm 16867 prmlem2 16870 37prm 16871 317prm 16876 1259lem1 16881 1259lem2 16882 1259lem4 16884 2503lem2 16888 4001lem1 16891 4001lem4 16894 log2ub 26148 bposlem8 26488 aks4d1p1p4 40279 aks4d1p1p7 40282 ex-decpmul 40515 resqrtvalex 41466 imsqrtvalex 41467 fmtno5lem2 45250 257prm 45257 127prm 45295 |
Copyright terms: Public domain | W3C validator |