| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version | ||
| Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p2e7 | ⊢ (5 + 2) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12191 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7360 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
| 3 | 5cn 12216 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 4 | ax-1cn 11067 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11125 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
| 7 | df-6 12195 | . . . 4 ⊢ 6 = (5 + 1) | |
| 8 | 7 | oveq1i 7359 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (5 + 2) = (6 + 1) |
| 10 | df-7 12196 | . 2 ⊢ 7 = (6 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (5 + 2) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 5c5 12186 6c6 12187 7c7 12188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 |
| This theorem is referenced by: 5p3e8 12280 17prm 17028 prmlem2 17031 37prm 17032 317prm 17037 1259lem1 17042 1259lem2 17043 1259lem4 17045 2503lem2 17049 4001lem1 17052 4001lem4 17055 log2ub 26857 bposlem8 27200 aks4d1p1p4 42048 aks4d1p1p7 42051 ex-decpmul 42283 resqrtvalex 43622 imsqrtvalex 43623 fmtno5lem2 47542 257prm 47549 127prm 47587 |
| Copyright terms: Public domain | W3C validator |