Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version |
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p2e7 | ⊢ (5 + 2) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12019 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7279 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
3 | 5cn 12044 | . . . . 5 ⊢ 5 ∈ ℂ | |
4 | ax-1cn 10913 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10969 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2770 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
7 | df-6 12023 | . . . 4 ⊢ 6 = (5 + 1) | |
8 | 7 | oveq1i 7278 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
9 | 6, 8 | eqtr4i 2770 | . 2 ⊢ (5 + 2) = (6 + 1) |
10 | df-7 12024 | . 2 ⊢ 7 = (6 + 1) | |
11 | 9, 10 | eqtr4i 2770 | 1 ⊢ (5 + 2) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 1c1 10856 + caddc 10858 2c2 12011 5c5 12014 6c6 12015 7c7 12016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-addcl 10915 ax-addass 10920 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 |
This theorem is referenced by: 5p3e8 12113 17prm 16799 prmlem2 16802 37prm 16803 317prm 16808 1259lem1 16813 1259lem2 16814 1259lem4 16816 2503lem2 16820 4001lem1 16823 4001lem4 16826 log2ub 26080 bposlem8 26420 aks4d1p1p4 40059 aks4d1p1p7 40062 ex-decpmul 40300 resqrtvalex 41206 imsqrtvalex 41207 fmtno5lem2 44958 257prm 44965 127prm 45003 |
Copyright terms: Public domain | W3C validator |