| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version | ||
| Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p2e7 | ⊢ (5 + 2) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7398 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
| 3 | 5cn 12274 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 4 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11184 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
| 7 | df-6 12253 | . . . 4 ⊢ 6 = (5 + 1) | |
| 8 | 7 | oveq1i 7397 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (5 + 2) = (6 + 1) |
| 10 | df-7 12254 | . 2 ⊢ 7 = (6 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (5 + 2) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 5c5 12244 6c6 12245 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 |
| This theorem is referenced by: 5p3e8 12338 17prm 17087 prmlem2 17090 37prm 17091 317prm 17096 1259lem1 17101 1259lem2 17102 1259lem4 17104 2503lem2 17108 4001lem1 17111 4001lem4 17114 log2ub 26859 bposlem8 27202 aks4d1p1p4 42059 aks4d1p1p7 42062 ex-decpmul 42294 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem2 47555 257prm 47562 127prm 47600 |
| Copyright terms: Public domain | W3C validator |