| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version | ||
| Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p2e7 | ⊢ (5 + 2) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12256 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7401 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
| 3 | 5cn 12281 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 4 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11191 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2756 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
| 7 | df-6 12260 | . . . 4 ⊢ 6 = (5 + 1) | |
| 8 | 7 | oveq1i 7400 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2756 | . 2 ⊢ (5 + 2) = (6 + 1) |
| 10 | df-7 12261 | . 2 ⊢ 7 = (6 + 1) | |
| 11 | 9, 10 | eqtr4i 2756 | 1 ⊢ (5 + 2) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 5c5 12251 6c6 12252 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 |
| This theorem is referenced by: 5p3e8 12345 17prm 17094 prmlem2 17097 37prm 17098 317prm 17103 1259lem1 17108 1259lem2 17109 1259lem4 17111 2503lem2 17115 4001lem1 17118 4001lem4 17121 log2ub 26866 bposlem8 27209 aks4d1p1p4 42066 aks4d1p1p7 42069 ex-decpmul 42301 resqrtvalex 43641 imsqrtvalex 43642 fmtno5lem2 47559 257prm 47566 127prm 47604 |
| Copyright terms: Public domain | W3C validator |