| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p2e7 | Structured version Visualization version GIF version | ||
| Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p2e7 | ⊢ (5 + 2) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12225 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7380 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
| 3 | 5cn 12250 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 4 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11160 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
| 7 | df-6 12229 | . . . 4 ⊢ 6 = (5 + 1) | |
| 8 | 7 | oveq1i 7379 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (5 + 2) = (6 + 1) |
| 10 | df-7 12230 | . 2 ⊢ 7 = (6 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (5 + 2) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 5c5 12220 6c6 12221 7c7 12222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 |
| This theorem is referenced by: 5p3e8 12314 17prm 17063 prmlem2 17066 37prm 17067 317prm 17072 1259lem1 17077 1259lem2 17078 1259lem4 17080 2503lem2 17084 4001lem1 17087 4001lem4 17090 log2ub 26892 bposlem8 27235 aks4d1p1p4 42052 aks4d1p1p7 42055 ex-decpmul 42287 resqrtvalex 43627 imsqrtvalex 43628 fmtno5lem2 47548 257prm 47555 127prm 47593 |
| Copyright terms: Public domain | W3C validator |