Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   GIF version

Theorem stgoldbwt 47763
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 803 . . . . . 6 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd )
2 gbogbow 47743 . . . . . . 7 (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW )
32a1d 25 . . . . . 6 (𝑛 ∈ GoldbachOdd → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
41, 3syl 17 . . . . 5 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
54ex 412 . . . 4 (7 < 𝑛 → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
65a1d 25 . . 3 (7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
7 oddz 47618 . . . . . . . 8 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
87zred 12722 . . . . . . 7 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
9 7re 12359 . . . . . . . 8 7 ∈ ℝ
109a1i 11 . . . . . . 7 (𝑛 ∈ Odd → 7 ∈ ℝ)
118, 10lenltd 11407 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 < 𝑛))
128, 10leloed 11404 . . . . . . . 8 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7)))
137adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ)
14 6nn 12355 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
1514nnzi 12641 . . . . . . . . . . . . . . . 16 6 ∈ ℤ
1613, 15jctir 520 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
1716adantl 481 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
18 df-7 12334 . . . . . . . . . . . . . . . . 17 7 = (6 + 1)
1918breq2i 5151 . . . . . . . . . . . . . . . 16 (𝑛 < 7 ↔ 𝑛 < (6 + 1))
2019biimpi 216 . . . . . . . . . . . . . . 15 (𝑛 < 7 → 𝑛 < (6 + 1))
21 df-6 12333 . . . . . . . . . . . . . . . 16 6 = (5 + 1)
22 5nn 12352 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℕ
2322nnzi 12641 . . . . . . . . . . . . . . . . . 18 5 ∈ ℤ
24 zltp1le 12667 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2523, 7, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2625biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛)
2721, 26eqbrtrid 5178 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛)
2820, 27anim12ci 614 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛𝑛 < (6 + 1)))
29 zgeltp1eq 47321 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 6 ∈ ℤ) → ((6 ≤ 𝑛𝑛 < (6 + 1)) → 𝑛 = 6))
3017, 28, 29sylc 65 . . . . . . . . . . . . 13 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6)
3130orcd 874 . . . . . . . . . . . 12 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7))
3231ex 412 . . . . . . . . . . 11 (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
33 olc 869 . . . . . . . . . . . 12 (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7))
3433a1d 25 . . . . . . . . . . 11 (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3532, 34jaoi 858 . . . . . . . . . 10 ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3635expd 415 . . . . . . . . 9 ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3736com12 32 . . . . . . . 8 (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3812, 37sylbid 240 . . . . . . 7 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
39 eleq1 2829 . . . . . . . . . 10 (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd ))
40 6even 47698 . . . . . . . . . . 11 6 ∈ Even
41 evennodd 47630 . . . . . . . . . . . 12 (6 ∈ Even → ¬ 6 ∈ Odd )
4241pm2.21d 121 . . . . . . . . . . 11 (6 ∈ Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4340, 42mp1i 13 . . . . . . . . . 10 (𝑛 = 6 → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4439, 43sylbid 240 . . . . . . . . 9 (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
45 7gbow 47759 . . . . . . . . . . 11 7 ∈ GoldbachOddW
46 eleq1 2829 . . . . . . . . . . 11 (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑛 = 7 → 𝑛 ∈ GoldbachOddW )
4847a1d 25 . . . . . . . . 9 (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4944, 48jaoi 858 . . . . . . . 8 ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
5049com12 32 . . . . . . 7 (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW ))
5138, 50syl6d 75 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5211, 51sylbird 260 . . . . 5 (𝑛 ∈ Odd → (¬ 7 < 𝑛 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5352com12 32 . . . 4 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5453a1dd 50 . . 3 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
556, 54pm2.61i 182 . 2 (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5655ralimia 3080 1 (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  5c5 12324  6c6 12325  7c7 12326  cz 12613   Even ceven 47611   Odd codd 47612   GoldbachOddW cgbow 47733   GoldbachOdd cgbo 47734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-even 47613  df-odd 47614  df-gbow 47736  df-gbo 47737
This theorem is referenced by:  stgoldbnnsum4prm  47790
  Copyright terms: Public domain W3C validator