Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   GIF version

Theorem stgoldbwt 42272
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 837 . . . . . 6 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd )
2 gbogbow 42252 . . . . . . 7 (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW )
32a1d 25 . . . . . 6 (𝑛 ∈ GoldbachOdd → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
41, 3syl 17 . . . . 5 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
54ex 401 . . . 4 (7 < 𝑛 → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
65a1d 25 . . 3 (7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
7 oddz 42152 . . . . . . . 8 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
87zred 11728 . . . . . . 7 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
9 7re 11368 . . . . . . . 8 7 ∈ ℝ
109a1i 11 . . . . . . 7 (𝑛 ∈ Odd → 7 ∈ ℝ)
118, 10lenltd 10436 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 < 𝑛))
128, 10leloed 10433 . . . . . . . 8 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7)))
137adantr 472 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ)
14 6nn 11363 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
1514nnzi 11647 . . . . . . . . . . . . . . . 16 6 ∈ ℤ
1613, 15jctir 516 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
1716adantl 473 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
18 df-7 11339 . . . . . . . . . . . . . . . . 17 7 = (6 + 1)
1918breq2i 4816 . . . . . . . . . . . . . . . 16 (𝑛 < 7 ↔ 𝑛 < (6 + 1))
2019biimpi 207 . . . . . . . . . . . . . . 15 (𝑛 < 7 → 𝑛 < (6 + 1))
21 df-6 11338 . . . . . . . . . . . . . . . 16 6 = (5 + 1)
22 5nn 11359 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℕ
2322nnzi 11647 . . . . . . . . . . . . . . . . . 18 5 ∈ ℤ
24 zltp1le 11673 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2523, 7, 24sylancr 581 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2625biimpa 468 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛)
2721, 26syl5eqbr 4843 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛)
2820, 27anim12ci 607 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛𝑛 < (6 + 1)))
29 zgeltp1eq 41985 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 6 ∈ ℤ) → ((6 ≤ 𝑛𝑛 < (6 + 1)) → 𝑛 = 6))
3017, 28, 29sylc 65 . . . . . . . . . . . . 13 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6)
3130orcd 899 . . . . . . . . . . . 12 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7))
3231ex 401 . . . . . . . . . . 11 (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
33 olc 894 . . . . . . . . . . . 12 (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7))
3433a1d 25 . . . . . . . . . . 11 (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3532, 34jaoi 883 . . . . . . . . . 10 ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3635expd 404 . . . . . . . . 9 ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3736com12 32 . . . . . . . 8 (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3812, 37sylbid 231 . . . . . . 7 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
39 eleq1 2831 . . . . . . . . . 10 (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd ))
40 6even 42228 . . . . . . . . . . 11 6 ∈ Even
41 evennodd 42164 . . . . . . . . . . . 12 (6 ∈ Even → ¬ 6 ∈ Odd )
4241pm2.21d 119 . . . . . . . . . . 11 (6 ∈ Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4340, 42mp1i 13 . . . . . . . . . 10 (𝑛 = 6 → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4439, 43sylbid 231 . . . . . . . . 9 (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
45 7gbow 42268 . . . . . . . . . . 11 7 ∈ GoldbachOddW
46 eleq1 2831 . . . . . . . . . . 11 (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ))
4745, 46mpbiri 249 . . . . . . . . . 10 (𝑛 = 7 → 𝑛 ∈ GoldbachOddW )
4847a1d 25 . . . . . . . . 9 (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4944, 48jaoi 883 . . . . . . . 8 ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
5049com12 32 . . . . . . 7 (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW ))
5138, 50syl6d 75 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5211, 51sylbird 251 . . . . 5 (𝑛 ∈ Odd → (¬ 7 < 𝑛 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5352com12 32 . . . 4 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5453a1dd 50 . . 3 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
556, 54pm2.61i 176 . 2 (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5655ralimia 3096 1 (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wral 3054   class class class wbr 4808  (class class class)co 6841  cr 10187  1c1 10189   + caddc 10191   < clt 10327  cle 10328  5c5 11329  6c6 11330  7c7 11331  cz 11623   Even ceven 42145   Odd codd 42146   GoldbachOddW cgbow 42242   GoldbachOdd cgbo 42243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-n0 11538  df-z 11624  df-uz 11886  df-rp 12028  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-dvds 15267  df-prm 15667  df-even 42147  df-odd 42148  df-gbow 42245  df-gbo 42246
This theorem is referenced by:  stgoldbnnsum4prm  42299
  Copyright terms: Public domain W3C validator