Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   GIF version

Theorem stgoldbwt 47886
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 802 . . . . . 6 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd )
2 gbogbow 47866 . . . . . . 7 (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW )
32a1d 25 . . . . . 6 (𝑛 ∈ GoldbachOdd → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
41, 3syl 17 . . . . 5 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
54ex 412 . . . 4 (7 < 𝑛 → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
65a1d 25 . . 3 (7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
7 oddz 47741 . . . . . . . 8 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
87zred 12577 . . . . . . 7 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
9 7re 12218 . . . . . . . 8 7 ∈ ℝ
109a1i 11 . . . . . . 7 (𝑛 ∈ Odd → 7 ∈ ℝ)
118, 10lenltd 11259 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 < 𝑛))
128, 10leloed 11256 . . . . . . . 8 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7)))
137adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ)
14 6nn 12214 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
1514nnzi 12496 . . . . . . . . . . . . . . . 16 6 ∈ ℤ
1613, 15jctir 520 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
1716adantl 481 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
18 df-7 12193 . . . . . . . . . . . . . . . . 17 7 = (6 + 1)
1918breq2i 5097 . . . . . . . . . . . . . . . 16 (𝑛 < 7 ↔ 𝑛 < (6 + 1))
2019biimpi 216 . . . . . . . . . . . . . . 15 (𝑛 < 7 → 𝑛 < (6 + 1))
21 df-6 12192 . . . . . . . . . . . . . . . 16 6 = (5 + 1)
22 5nn 12211 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℕ
2322nnzi 12496 . . . . . . . . . . . . . . . . . 18 5 ∈ ℤ
24 zltp1le 12522 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2523, 7, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2625biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛)
2721, 26eqbrtrid 5124 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛)
2820, 27anim12ci 614 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛𝑛 < (6 + 1)))
29 zgeltp1eq 47419 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 6 ∈ ℤ) → ((6 ≤ 𝑛𝑛 < (6 + 1)) → 𝑛 = 6))
3017, 28, 29sylc 65 . . . . . . . . . . . . 13 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6)
3130orcd 873 . . . . . . . . . . . 12 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7))
3231ex 412 . . . . . . . . . . 11 (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
33 olc 868 . . . . . . . . . . . 12 (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7))
3433a1d 25 . . . . . . . . . . 11 (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3532, 34jaoi 857 . . . . . . . . . 10 ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3635expd 415 . . . . . . . . 9 ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3736com12 32 . . . . . . . 8 (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3812, 37sylbid 240 . . . . . . 7 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
39 eleq1 2819 . . . . . . . . . 10 (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd ))
40 6even 47821 . . . . . . . . . . 11 6 ∈ Even
41 evennodd 47753 . . . . . . . . . . . 12 (6 ∈ Even → ¬ 6 ∈ Odd )
4241pm2.21d 121 . . . . . . . . . . 11 (6 ∈ Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4340, 42mp1i 13 . . . . . . . . . 10 (𝑛 = 6 → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4439, 43sylbid 240 . . . . . . . . 9 (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
45 7gbow 47882 . . . . . . . . . . 11 7 ∈ GoldbachOddW
46 eleq1 2819 . . . . . . . . . . 11 (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑛 = 7 → 𝑛 ∈ GoldbachOddW )
4847a1d 25 . . . . . . . . 9 (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4944, 48jaoi 857 . . . . . . . 8 ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
5049com12 32 . . . . . . 7 (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW ))
5138, 50syl6d 75 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5211, 51sylbird 260 . . . . 5 (𝑛 ∈ Odd → (¬ 7 < 𝑛 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5352com12 32 . . . 4 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5453a1dd 50 . . 3 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
556, 54pm2.61i 182 . 2 (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5655ralimia 3066 1 (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   < clt 11146  cle 11147  5c5 12183  6c6 12184  7c7 12185  cz 12468   Even ceven 47734   Odd codd 47735   GoldbachOddW cgbow 47856   GoldbachOdd cgbo 47857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-even 47736  df-odd 47737  df-gbow 47859  df-gbo 47860
This theorem is referenced by:  stgoldbnnsum4prm  47913
  Copyright terms: Public domain W3C validator