Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   GIF version

Theorem stgoldbwt 47700
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 803 . . . . . 6 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd )
2 gbogbow 47680 . . . . . . 7 (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW )
32a1d 25 . . . . . 6 (𝑛 ∈ GoldbachOdd → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
41, 3syl 17 . . . . 5 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
54ex 412 . . . 4 (7 < 𝑛 → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
65a1d 25 . . 3 (7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
7 oddz 47555 . . . . . . . 8 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
87zred 12719 . . . . . . 7 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
9 7re 12356 . . . . . . . 8 7 ∈ ℝ
109a1i 11 . . . . . . 7 (𝑛 ∈ Odd → 7 ∈ ℝ)
118, 10lenltd 11404 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 < 𝑛))
128, 10leloed 11401 . . . . . . . 8 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7)))
137adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ)
14 6nn 12352 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
1514nnzi 12638 . . . . . . . . . . . . . . . 16 6 ∈ ℤ
1613, 15jctir 520 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
1716adantl 481 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
18 df-7 12331 . . . . . . . . . . . . . . . . 17 7 = (6 + 1)
1918breq2i 5155 . . . . . . . . . . . . . . . 16 (𝑛 < 7 ↔ 𝑛 < (6 + 1))
2019biimpi 216 . . . . . . . . . . . . . . 15 (𝑛 < 7 → 𝑛 < (6 + 1))
21 df-6 12330 . . . . . . . . . . . . . . . 16 6 = (5 + 1)
22 5nn 12349 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℕ
2322nnzi 12638 . . . . . . . . . . . . . . . . . 18 5 ∈ ℤ
24 zltp1le 12664 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2523, 7, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2625biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛)
2721, 26eqbrtrid 5182 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛)
2820, 27anim12ci 614 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛𝑛 < (6 + 1)))
29 zgeltp1eq 47258 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 6 ∈ ℤ) → ((6 ≤ 𝑛𝑛 < (6 + 1)) → 𝑛 = 6))
3017, 28, 29sylc 65 . . . . . . . . . . . . 13 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6)
3130orcd 873 . . . . . . . . . . . 12 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7))
3231ex 412 . . . . . . . . . . 11 (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
33 olc 868 . . . . . . . . . . . 12 (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7))
3433a1d 25 . . . . . . . . . . 11 (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3532, 34jaoi 857 . . . . . . . . . 10 ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3635expd 415 . . . . . . . . 9 ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3736com12 32 . . . . . . . 8 (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3812, 37sylbid 240 . . . . . . 7 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
39 eleq1 2826 . . . . . . . . . 10 (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd ))
40 6even 47635 . . . . . . . . . . 11 6 ∈ Even
41 evennodd 47567 . . . . . . . . . . . 12 (6 ∈ Even → ¬ 6 ∈ Odd )
4241pm2.21d 121 . . . . . . . . . . 11 (6 ∈ Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4340, 42mp1i 13 . . . . . . . . . 10 (𝑛 = 6 → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4439, 43sylbid 240 . . . . . . . . 9 (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
45 7gbow 47696 . . . . . . . . . . 11 7 ∈ GoldbachOddW
46 eleq1 2826 . . . . . . . . . . 11 (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑛 = 7 → 𝑛 ∈ GoldbachOddW )
4847a1d 25 . . . . . . . . 9 (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4944, 48jaoi 857 . . . . . . . 8 ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
5049com12 32 . . . . . . 7 (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW ))
5138, 50syl6d 75 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5211, 51sylbird 260 . . . . 5 (𝑛 ∈ Odd → (¬ 7 < 𝑛 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5352com12 32 . . . 4 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5453a1dd 50 . . 3 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
556, 54pm2.61i 182 . 2 (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5655ralimia 3077 1 (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wral 3058   class class class wbr 5147  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  5c5 12321  6c6 12322  7c7 12323  cz 12610   Even ceven 47548   Odd codd 47549   GoldbachOddW cgbow 47670   GoldbachOdd cgbo 47671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705  df-even 47550  df-odd 47551  df-gbow 47673  df-gbo 47674
This theorem is referenced by:  stgoldbnnsum4prm  47727
  Copyright terms: Public domain W3C validator