Proof of Theorem stgoldbwt
Step | Hyp | Ref
| Expression |
1 | | pm3.35 799 |
. . . . . 6
⊢ ((7 <
𝑛 ∧ (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd
) |
2 | | gbogbow 45096 |
. . . . . . 7
⊢ (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW
) |
3 | 2 | a1d 25 |
. . . . . 6
⊢ (𝑛 ∈ GoldbachOdd → (5
< 𝑛 → 𝑛 ∈ GoldbachOddW
)) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ ((7 <
𝑛 ∧ (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )) → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) |
5 | 4 | ex 412 |
. . . 4
⊢ (7 <
𝑛 → ((7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ))) |
6 | 5 | a1d 25 |
. . 3
⊢ (7 <
𝑛 → (𝑛 ∈ Odd → ((7 <
𝑛 → 𝑛 ∈ GoldbachOdd ) → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )))) |
7 | | oddz 44971 |
. . . . . . . 8
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℤ) |
8 | 7 | zred 12355 |
. . . . . . 7
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ) |
9 | | 7re 11996 |
. . . . . . . 8
⊢ 7 ∈
ℝ |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝑛 ∈ Odd → 7 ∈
ℝ) |
11 | 8, 10 | lenltd 11051 |
. . . . . 6
⊢ (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 <
𝑛)) |
12 | 8, 10 | leloed 11048 |
. . . . . . . 8
⊢ (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7))) |
13 | 7 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ) |
14 | | 6nn 11992 |
. . . . . . . . . . . . . . . . 17
⊢ 6 ∈
ℕ |
15 | 14 | nnzi 12274 |
. . . . . . . . . . . . . . . 16
⊢ 6 ∈
ℤ |
16 | 13, 15 | jctir 520 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈
ℤ)) |
17 | 16 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈
ℤ)) |
18 | | df-7 11971 |
. . . . . . . . . . . . . . . . 17
⊢ 7 = (6 +
1) |
19 | 18 | breq2i 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 < 7 ↔ 𝑛 < (6 + 1)) |
20 | 19 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 < 7 → 𝑛 < (6 + 1)) |
21 | | df-6 11970 |
. . . . . . . . . . . . . . . 16
⊢ 6 = (5 +
1) |
22 | | 5nn 11989 |
. . . . . . . . . . . . . . . . . . 19
⊢ 5 ∈
ℕ |
23 | 22 | nnzi 12274 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℤ |
24 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . 18
⊢ ((5
∈ ℤ ∧ 𝑛
∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛)) |
25 | 23, 7, 24 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛)) |
26 | 25 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛) |
27 | 21, 26 | eqbrtrid 5105 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛) |
28 | 20, 27 | anim12ci 613 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛 ∧ 𝑛 < (6 + 1))) |
29 | | zgeltp1eq 44689 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℤ ∧ 6 ∈
ℤ) → ((6 ≤ 𝑛
∧ 𝑛 < (6 + 1))
→ 𝑛 =
6)) |
30 | 17, 28, 29 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6) |
31 | 30 | orcd 869 |
. . . . . . . . . . . 12
⊢ ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7)) |
32 | 31 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7))) |
33 | | olc 864 |
. . . . . . . . . . . 12
⊢ (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7)) |
34 | 33 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7))) |
35 | 32, 34 | jaoi 853 |
. . . . . . . . . 10
⊢ ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7))) |
36 | 35 | expd 415 |
. . . . . . . . 9
⊢ ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7)))) |
37 | 36 | com12 32 |
. . . . . . . 8
⊢ (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7)))) |
38 | 12, 37 | sylbid 239 |
. . . . . . 7
⊢ (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7)))) |
39 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd
)) |
40 | | 6even 45051 |
. . . . . . . . . . 11
⊢ 6 ∈
Even |
41 | | evennodd 44983 |
. . . . . . . . . . . 12
⊢ (6 ∈
Even → ¬ 6 ∈ Odd ) |
42 | 41 | pm2.21d 121 |
. . . . . . . . . . 11
⊢ (6 ∈
Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW )) |
43 | 40, 42 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝑛 = 6 → (6 ∈ Odd →
𝑛 ∈ GoldbachOddW
)) |
44 | 39, 43 | sylbid 239 |
. . . . . . . . 9
⊢ (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW )) |
45 | | 7gbow 45112 |
. . . . . . . . . . 11
⊢ 7 ∈
GoldbachOddW |
46 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈
GoldbachOddW )) |
47 | 45, 46 | mpbiri 257 |
. . . . . . . . . 10
⊢ (𝑛 = 7 → 𝑛 ∈ GoldbachOddW ) |
48 | 47 | a1d 25 |
. . . . . . . . 9
⊢ (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW )) |
49 | 44, 48 | jaoi 853 |
. . . . . . . 8
⊢ ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW )) |
50 | 49 | com12 32 |
. . . . . . 7
⊢ (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW )) |
51 | 38, 50 | syl6d 75 |
. . . . . 6
⊢ (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ))) |
52 | 11, 51 | sylbird 259 |
. . . . 5
⊢ (𝑛 ∈ Odd → (¬ 7 <
𝑛 → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ))) |
53 | 52 | com12 32 |
. . . 4
⊢ (¬ 7
< 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ))) |
54 | 53 | a1dd 50 |
. . 3
⊢ (¬ 7
< 𝑛 → (𝑛 ∈ Odd → ((7 <
𝑛 → 𝑛 ∈ GoldbachOdd ) → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )))) |
55 | 6, 54 | pm2.61i 182 |
. 2
⊢ (𝑛 ∈ Odd → ((7 <
𝑛 → 𝑛 ∈ GoldbachOdd ) → (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ))) |
56 | 55 | ralimia 3084 |
1
⊢
(∀𝑛 ∈
Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) →
∀𝑛 ∈ Odd (5
< 𝑛 → 𝑛 ∈ GoldbachOddW
)) |