Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   GIF version

Theorem stgoldbwt 47781
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 802 . . . . . 6 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → 𝑛 ∈ GoldbachOdd )
2 gbogbow 47761 . . . . . . 7 (𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW )
32a1d 25 . . . . . 6 (𝑛 ∈ GoldbachOdd → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
41, 3syl 17 . . . . 5 ((7 < 𝑛 ∧ (7 < 𝑛𝑛 ∈ GoldbachOdd )) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
54ex 412 . . . 4 (7 < 𝑛 → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
65a1d 25 . . 3 (7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
7 oddz 47636 . . . . . . . 8 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
87zred 12645 . . . . . . 7 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
9 7re 12286 . . . . . . . 8 7 ∈ ℝ
109a1i 11 . . . . . . 7 (𝑛 ∈ Odd → 7 ∈ ℝ)
118, 10lenltd 11327 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ ¬ 7 < 𝑛))
128, 10leloed 11324 . . . . . . . 8 (𝑛 ∈ Odd → (𝑛 ≤ 7 ↔ (𝑛 < 7 ∨ 𝑛 = 7)))
137adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 𝑛 ∈ ℤ)
14 6nn 12282 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
1514nnzi 12564 . . . . . . . . . . . . . . . 16 6 ∈ ℤ
1613, 15jctir 520 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
1716adantl 481 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 ∈ ℤ ∧ 6 ∈ ℤ))
18 df-7 12261 . . . . . . . . . . . . . . . . 17 7 = (6 + 1)
1918breq2i 5118 . . . . . . . . . . . . . . . 16 (𝑛 < 7 ↔ 𝑛 < (6 + 1))
2019biimpi 216 . . . . . . . . . . . . . . 15 (𝑛 < 7 → 𝑛 < (6 + 1))
21 df-6 12260 . . . . . . . . . . . . . . . 16 6 = (5 + 1)
22 5nn 12279 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℕ
2322nnzi 12564 . . . . . . . . . . . . . . . . . 18 5 ∈ ℤ
24 zltp1le 12590 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2523, 7, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
2625biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (5 + 1) ≤ 𝑛)
2721, 26eqbrtrid 5145 . . . . . . . . . . . . . . 15 ((𝑛 ∈ Odd ∧ 5 < 𝑛) → 6 ≤ 𝑛)
2820, 27anim12ci 614 . . . . . . . . . . . . . 14 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (6 ≤ 𝑛𝑛 < (6 + 1)))
29 zgeltp1eq 47314 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 6 ∈ ℤ) → ((6 ≤ 𝑛𝑛 < (6 + 1)) → 𝑛 = 6))
3017, 28, 29sylc 65 . . . . . . . . . . . . 13 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → 𝑛 = 6)
3130orcd 873 . . . . . . . . . . . 12 ((𝑛 < 7 ∧ (𝑛 ∈ Odd ∧ 5 < 𝑛)) → (𝑛 = 6 ∨ 𝑛 = 7))
3231ex 412 . . . . . . . . . . 11 (𝑛 < 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
33 olc 868 . . . . . . . . . . . 12 (𝑛 = 7 → (𝑛 = 6 ∨ 𝑛 = 7))
3433a1d 25 . . . . . . . . . . 11 (𝑛 = 7 → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3532, 34jaoi 857 . . . . . . . . . 10 ((𝑛 < 7 ∨ 𝑛 = 7) → ((𝑛 ∈ Odd ∧ 5 < 𝑛) → (𝑛 = 6 ∨ 𝑛 = 7)))
3635expd 415 . . . . . . . . 9 ((𝑛 < 7 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3736com12 32 . . . . . . . 8 (𝑛 ∈ Odd → ((𝑛 < 7 ∨ 𝑛 = 7) → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
3812, 37sylbid 240 . . . . . . 7 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛 → (𝑛 = 6 ∨ 𝑛 = 7))))
39 eleq1 2817 . . . . . . . . . 10 (𝑛 = 6 → (𝑛 ∈ Odd ↔ 6 ∈ Odd ))
40 6even 47716 . . . . . . . . . . 11 6 ∈ Even
41 evennodd 47648 . . . . . . . . . . . 12 (6 ∈ Even → ¬ 6 ∈ Odd )
4241pm2.21d 121 . . . . . . . . . . 11 (6 ∈ Even → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4340, 42mp1i 13 . . . . . . . . . 10 (𝑛 = 6 → (6 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4439, 43sylbid 240 . . . . . . . . 9 (𝑛 = 6 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
45 7gbow 47777 . . . . . . . . . . 11 7 ∈ GoldbachOddW
46 eleq1 2817 . . . . . . . . . . 11 (𝑛 = 7 → (𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ))
4745, 46mpbiri 258 . . . . . . . . . 10 (𝑛 = 7 → 𝑛 ∈ GoldbachOddW )
4847a1d 25 . . . . . . . . 9 (𝑛 = 7 → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
4944, 48jaoi 857 . . . . . . . 8 ((𝑛 = 6 ∨ 𝑛 = 7) → (𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ))
5049com12 32 . . . . . . 7 (𝑛 ∈ Odd → ((𝑛 = 6 ∨ 𝑛 = 7) → 𝑛 ∈ GoldbachOddW ))
5138, 50syl6d 75 . . . . . 6 (𝑛 ∈ Odd → (𝑛 ≤ 7 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5211, 51sylbird 260 . . . . 5 (𝑛 ∈ Odd → (¬ 7 < 𝑛 → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5352com12 32 . . . 4 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5453a1dd 50 . . 3 (¬ 7 < 𝑛 → (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))))
556, 54pm2.61i 182 . 2 (𝑛 ∈ Odd → ((7 < 𝑛𝑛 ∈ GoldbachOdd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW )))
5655ralimia 3064 1 (∀𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  5c5 12251  6c6 12252  7c7 12253  cz 12536   Even ceven 47629   Odd codd 47630   GoldbachOddW cgbow 47751   GoldbachOdd cgbo 47752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-even 47631  df-odd 47632  df-gbow 47754  df-gbo 47755
This theorem is referenced by:  stgoldbnnsum4prm  47808
  Copyright terms: Public domain W3C validator