![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12311 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7435 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 12333 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 11202 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11260 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2758 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 12314 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 7434 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2758 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 12315 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2758 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7424 1c1 11145 + caddc 11147 2c2 12303 4c4 12305 5c5 12306 6c6 12307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-1cn 11202 ax-addcl 11204 ax-addass 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-iota 6503 df-fv 6559 df-ov 7427 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 |
This theorem is referenced by: 4p3e7 12402 div4p1lem1div2 12503 4t4e16 12812 6gcd4e2 16519 2exp16 17065 163prm 17099 631prm 17101 1259lem4 17108 2503lem2 17112 2503lem3 17113 4001lem1 17115 4001lem2 17116 4001lem4 17118 bposlem9 27243 hgt750lem2 34289 3exp7 41528 3lexlogpow5ineq1 41529 aks4d1p1p5 41550 235t711 41870 ex-decpmul 41871 3cubeslem3r 42110 lhe4.4ex1a 43769 fmtno4prmfac 46914 fmtno5faclem1 46921 gbowgt5 47104 mogoldbb 47127 |
Copyright terms: Public domain | W3C validator |