Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11941 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7263 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 11963 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 10835 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10891 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2770 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 11944 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 7262 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2770 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 11945 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2770 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 2c2 11933 4c4 11935 5c5 11936 6c6 11937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 ax-addass 10842 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 |
This theorem is referenced by: 4p3e7 12032 div4p1lem1div2 12133 4t4e16 12440 6gcd4e2 16149 2exp16 16695 163prm 16729 631prm 16731 1259lem4 16738 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem2 16746 4001lem4 16748 bposlem9 26320 hgt750lem2 32507 3exp7 39968 3lexlogpow5ineq1 39969 aks4d1p1p5 39989 235t711 40212 ex-decpmul 40213 3cubeslem3r 40397 lhe4.4ex1a 41809 fmtno4prmfac 44885 fmtno5faclem1 44892 gbowgt5 45075 mogoldbb 45098 |
Copyright terms: Public domain | W3C validator |