![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12327 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7442 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 12349 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 11211 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11269 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2766 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 12330 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 7441 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2766 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 12331 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2766 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 2c2 12319 4c4 12321 5c5 12322 6c6 12323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 ax-addass 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 |
This theorem is referenced by: 4p3e7 12418 div4p1lem1div2 12519 4t4e16 12830 6gcd4e2 16572 2exp16 17125 163prm 17159 631prm 17161 1259lem4 17168 2503lem2 17172 2503lem3 17173 4001lem1 17175 4001lem2 17176 4001lem4 17178 bposlem9 27351 hgt750lem2 34646 3exp7 42035 3lexlogpow5ineq1 42036 aks4d1p1p5 42057 235t711 42318 ex-decpmul 42319 3cubeslem3r 42675 lhe4.4ex1a 44325 ceil5half3 47280 fmtno4prmfac 47497 fmtno5faclem1 47504 gbowgt5 47687 mogoldbb 47710 |
Copyright terms: Public domain | W3C validator |