| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version | ||
| Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p2e6 | ⊢ (4 + 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7398 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
| 3 | 4cn 12271 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11184 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
| 7 | df-5 12252 | . . . 4 ⊢ 5 = (4 + 1) | |
| 8 | 7 | oveq1i 7397 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (4 + 2) = (5 + 1) |
| 10 | df-6 12253 | . 2 ⊢ 6 = (5 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (4 + 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 4c4 12243 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 4p3e7 12335 div4p1lem1div2 12437 4t4e16 12748 6gcd4e2 16508 2exp16 17061 163prm 17095 631prm 17097 1259lem4 17104 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem4 17114 bposlem9 27203 hgt750lem2 34643 3exp7 42041 3lexlogpow5ineq1 42042 aks4d1p1p5 42063 235t711 42293 ex-decpmul 42294 3cubeslem3r 42675 lhe4.4ex1a 44318 ceil5half3 47338 fmtno4prmfac 47570 fmtno5faclem1 47577 gbowgt5 47760 mogoldbb 47783 |
| Copyright terms: Public domain | W3C validator |