Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version |
Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p2e6 | ⊢ (4 + 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11780 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7182 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
3 | 4cn 11802 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | ax-1cn 10674 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10730 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2764 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
7 | df-5 11783 | . . . 4 ⊢ 5 = (4 + 1) | |
8 | 7 | oveq1i 7181 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
9 | 6, 8 | eqtr4i 2764 | . 2 ⊢ (4 + 2) = (5 + 1) |
10 | df-6 11784 | . 2 ⊢ 6 = (5 + 1) | |
11 | 9, 10 | eqtr4i 2764 | 1 ⊢ (4 + 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7171 1c1 10617 + caddc 10619 2c2 11772 4c4 11774 5c5 11775 6c6 11776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-1cn 10674 ax-addcl 10676 ax-addass 10681 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-un 3849 df-in 3851 df-ss 3861 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-iota 6298 df-fv 6348 df-ov 7174 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 |
This theorem is referenced by: 4p3e7 11871 div4p1lem1div2 11972 4t4e16 12279 6gcd4e2 15983 2exp16 16528 163prm 16562 631prm 16564 1259lem4 16571 2503lem2 16575 2503lem3 16576 4001lem1 16578 4001lem2 16579 4001lem4 16581 bposlem9 26028 hgt750lem2 32202 3exp7 39678 3lexlogpow5ineq1 39679 aks4d1p1p5 39699 235t711 39887 ex-decpmul 39888 3cubeslem3r 40073 lhe4.4ex1a 41477 fmtno4prmfac 44550 fmtno5faclem1 44557 gbowgt5 44740 mogoldbb 44763 |
Copyright terms: Public domain | W3C validator |