| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version | ||
| Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p2e6 | ⊢ (4 + 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12308 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7421 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
| 3 | 4cn 12330 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | ax-1cn 11192 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11250 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2762 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
| 7 | df-5 12311 | . . . 4 ⊢ 5 = (4 + 1) | |
| 8 | 7 | oveq1i 7420 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2762 | . 2 ⊢ (4 + 2) = (5 + 1) |
| 10 | df-6 12312 | . 2 ⊢ 6 = (5 + 1) | |
| 11 | 9, 10 | eqtr4i 2762 | 1 ⊢ (4 + 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 2c2 12300 4c4 12302 5c5 12303 6c6 12304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-addcl 11194 ax-addass 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 |
| This theorem is referenced by: 4p3e7 12399 div4p1lem1div2 12501 4t4e16 12812 6gcd4e2 16562 2exp16 17115 163prm 17149 631prm 17151 1259lem4 17158 2503lem2 17162 2503lem3 17163 4001lem1 17165 4001lem2 17166 4001lem4 17168 bposlem9 27260 hgt750lem2 34689 3exp7 42071 3lexlogpow5ineq1 42072 aks4d1p1p5 42093 235t711 42321 ex-decpmul 42322 3cubeslem3r 42677 lhe4.4ex1a 44320 ceil5half3 47336 fmtno4prmfac 47553 fmtno5faclem1 47560 gbowgt5 47743 mogoldbb 47766 |
| Copyright terms: Public domain | W3C validator |