| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p2e6 | Structured version Visualization version GIF version | ||
| Description: 4 + 2 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p2e6 | ⊢ (4 + 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7357 | . . . 4 ⊢ (4 + 2) = (4 + (1 + 1)) |
| 3 | 4cn 12210 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11122 | . . . 4 ⊢ ((4 + 1) + 1) = (4 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2757 | . . 3 ⊢ (4 + 2) = ((4 + 1) + 1) |
| 7 | df-5 12191 | . . . 4 ⊢ 5 = (4 + 1) | |
| 8 | 7 | oveq1i 7356 | . . 3 ⊢ (5 + 1) = ((4 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2757 | . 2 ⊢ (4 + 2) = (5 + 1) |
| 10 | df-6 12192 | . 2 ⊢ 6 = (5 + 1) | |
| 11 | 9, 10 | eqtr4i 2757 | 1 ⊢ (4 + 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 2c2 12180 4c4 12182 5c5 12183 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: 4p3e7 12274 div4p1lem1div2 12376 4t4e16 12687 6gcd4e2 16449 2exp16 17002 163prm 17036 631prm 17038 1259lem4 17045 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem4 17055 bposlem9 27230 hgt750lem2 34665 3exp7 42156 3lexlogpow5ineq1 42157 aks4d1p1p5 42178 235t711 42408 ex-decpmul 42409 3cubeslem3r 42790 lhe4.4ex1a 44432 ceil5half3 47450 fmtno4prmfac 47682 fmtno5faclem1 47689 gbowgt5 47872 mogoldbb 47895 |
| Copyright terms: Public domain | W3C validator |