Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p1p5 40532
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p5.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p5.4 (𝜑 → 4 ≤ 𝑁)
aks4d1p1p5.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p5.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p5.7 𝐸 = ((2 logb 𝑁)↑4)
Assertion
Ref Expression
aks4d1p1p5 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p1p5.1 . 2 (𝜑𝑁 ∈ ℕ)
2 aks4d1p1p5.2 . 2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p1p5.3 . 2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
4 3re 12233 . . . 4 3 ∈ ℝ
54a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
6 4re 12237 . . . 4 4 ∈ ℝ
76a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
81nnred 12168 . . 3 (𝜑𝑁 ∈ ℝ)
95lep1d 12086 . . . 4 (𝜑 → 3 ≤ (3 + 1))
10 3p1e4 12298 . . . 4 (3 + 1) = 4
119, 10breqtrdi 5146 . . 3 (𝜑 → 3 ≤ 4)
12 aks4d1p1p5.4 . . 3 (𝜑 → 4 ≤ 𝑁)
135, 7, 8, 11, 12letrd 11312 . 2 (𝜑 → 3 ≤ 𝑁)
14 aks4d1p1p5.5 . 2 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
15 aks4d1p1p5.6 . 2 𝐷 = ((2 logb 𝑁)↑2)
16 aks4d1p1p5.7 . 2 𝐸 = ((2 logb 𝑁)↑4)
17 2re 12227 . . . . . . . 8 2 ∈ ℝ
1817a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℝ)
19 2pos 12256 . . . . . . . . 9 0 < 2
2019a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 2)
21 elicc2 13329 . . . . . . . . . . . . . . 15 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
227, 8, 21syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2322biimpd 228 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (4[,]𝑁) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2423imp 407 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
2524simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ)
26 0red 11158 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
2726adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
286a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℝ)
29 4pos 12260 . . . . . . . . . . . . 13 0 < 4
3029a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 4)
3124simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
3227, 28, 25, 30, 31ltletrd 11315 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
33 1red 11156 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
34 1lt2 12324 . . . . . . . . . . . . . . 15 1 < 2
3534a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 < 2)
3633, 35ltned 11291 . . . . . . . . . . . . 13 (𝜑 → 1 ≠ 2)
3736necomd 2999 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 1)
3837adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 1)
3918, 20, 25, 32, 38relogbcld 40430 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
40 5nn0 12433 . . . . . . . . . . 11 5 ∈ ℕ0
4140a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℕ0)
4239, 41reexpcld 14068 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑5) ∈ ℝ)
43 1red 11156 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ)
4442, 43readdcld 11184 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4527, 43readdcld 11184 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) ∈ ℝ)
4627ltp1d 12085 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (0 + 1))
4741nn0zd 12525 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℤ)
48 ax-resscn 11108 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
4948, 18sselid 3942 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℂ)
5027, 20gtned 11290 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 0)
51 logb1 26119 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5249, 50, 38, 51syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) = 0)
53 1lt4 12329 . . . . . . . . . . . . . . 15 1 < 4
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 4)
5543, 28, 25, 54, 31ltletrd 11315 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 𝑥)
56 2z 12535 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℤ)
5857uzidd 12779 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ (ℤ‘2))
59 1rp 12919 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
6059a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ+)
6125, 32elrpd 12954 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ+)
62 logblt 26134 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6358, 60, 61, 62syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6455, 63mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) < (2 logb 𝑥))
6552, 64eqbrtrrd 5129 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (2 logb 𝑥))
66 expgt0 14001 . . . . . . . . . . 11 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
6739, 47, 65, 66syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < ((2 logb 𝑥)↑5))
6827, 42, 43, 67ltadd1dd 11766 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
6927, 45, 44, 46, 68lttrd 11316 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (((2 logb 𝑥)↑5) + 1))
7018, 20, 44, 69, 38relogbcld 40430 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
7118, 70remulcld 11185 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℝ)
72 0red 11158 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
73 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ (4[,]𝑁))
747, 8jca 512 . . . . . . . . . . . . 13 (𝜑 → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7574adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7675, 21syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
7773, 76mpbid 231 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
7877simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
7972, 28, 25, 30, 78ltletrd 11315 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
8018, 20, 25, 79, 38relogbcld 40430 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
8180resqcld 14030 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑2) ∈ ℝ)
8271, 81readdcld 11184 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℝ)
8382fmpttd 7063 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ)
8448a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
85 3lt4 12327 . . . . . . . . . . 11 3 < 4
8685a1i 11 . . . . . . . . . 10 (𝜑 → 3 < 4)
878, 33readdcld 11184 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
888ltp1d 12085 . . . . . . . . . . 11 (𝜑𝑁 < (𝑁 + 1))
897, 8, 87, 12, 88lelttrd 11313 . . . . . . . . . 10 (𝜑 → 4 < (𝑁 + 1))
9086, 89jca 512 . . . . . . . . 9 (𝜑 → (3 < 4 ∧ 4 < (𝑁 + 1)))
915rexrd 11205 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ*)
9287rexrd 11205 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ*)
937rexrd 11205 . . . . . . . . . 10 (𝜑 → 4 ∈ ℝ*)
94 elioo5 13321 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ* ∧ 4 ∈ ℝ*) → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9591, 92, 93, 94syl3anc 1371 . . . . . . . . 9 (𝜑 → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9690, 95mpbird 256 . . . . . . . 8 (𝜑 → 4 ∈ (3(,)(𝑁 + 1)))
975, 7, 8, 86, 12ltletrd 11315 . . . . . . . . . 10 (𝜑 → 3 < 𝑁)
9897, 88jca 512 . . . . . . . . 9 (𝜑 → (3 < 𝑁𝑁 < (𝑁 + 1)))
998rexrd 11205 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ*)
100 elioo5 13321 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ*𝑁 ∈ ℝ*) → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10191, 92, 99, 100syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10298, 101mpbird 256 . . . . . . . 8 (𝜑𝑁 ∈ (3(,)(𝑁 + 1)))
103 iccssioo2 13337 . . . . . . . 8 ((4 ∈ (3(,)(𝑁 + 1)) ∧ 𝑁 ∈ (3(,)(𝑁 + 1))) → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
10496, 102, 103syl2anc 584 . . . . . . 7 (𝜑 → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
105104resmptd 5994 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))))
106 2cnd 12231 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℂ)
10717a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ)
10819a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 2)
109 elioore 13294 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (3(,)(𝑁 + 1)) → 𝑥 ∈ ℝ)
110109adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ)
111 0red 11158 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 ∈ ℝ)
1124a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 ∈ ℝ)
113 3pos 12258 . . . . . . . . . . . . . . . . . . 19 0 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 3)
115 eliooord 13323 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (3(,)(𝑁 + 1)) → (3 < 𝑥𝑥 < (𝑁 + 1)))
116 simpl 483 . . . . . . . . . . . . . . . . . . . 20 ((3 < 𝑥𝑥 < (𝑁 + 1)) → 3 < 𝑥)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (3(,)(𝑁 + 1)) → 3 < 𝑥)
118117adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 < 𝑥)
119111, 112, 110, 114, 118lttrd 11316 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 𝑥)
12037adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
121107, 108, 110, 119, 120relogbcld 40430 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℝ)
12240a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℕ0)
123121, 122reexpcld 14068 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℝ)
124 1red 11156 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℝ)
125123, 124readdcld 11184 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
126111, 124readdcld 11184 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) ∈ ℝ)
127111ltp1d 12085 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (0 + 1))
128122nn0zd 12525 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℤ)
12934a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 2)
130 2lt3 12325 . . . . . . . . . . . . . . . . . . . . 21 2 < 3
131130a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 < 3)
132124, 107, 112, 129, 131lttrd 11316 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 3)
133124, 112, 110, 132, 118lttrd 11316 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 𝑥)
134110, 119elrpd 12954 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ+)
135 2rp 12920 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ+)
137134, 136, 129jca32 516 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)))
138 logbgt0b 26143 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
139137, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
140133, 139mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (2 logb 𝑥))
141121, 128, 140, 66syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < ((2 logb 𝑥)↑5))
142111, 123, 124, 141ltadd1dd 11766 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
143111, 126, 125, 127, 142lttrd 11316 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (((2 logb 𝑥)↑5) + 1))
144124, 129ltned 11291 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ≠ 2)
145144necomd 2999 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
146107, 108, 125, 143, 145relogbcld 40430 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
147146recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
148106, 147mulcld 11175 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
14948, 121sselid 3942 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℂ)
150149sqcld 14049 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑2) ∈ ℂ)
151148, 150addcld 11174 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℂ)
152151fmpttd 7063 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ)
153 ioossre 13325 . . . . . . . . . 10 (3(,)(𝑁 + 1)) ⊆ ℝ
154153a1i 11 . . . . . . . . 9 (𝜑 → (3(,)(𝑁 + 1)) ⊆ ℝ)
15584, 152, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
156136relogcld 25978 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℝ)
157125, 156remulcld 11185 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
15848, 123sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℂ)
159 1cnd 11150 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℂ)
160158, 159addcld 11174 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
161111, 108gtned 11290 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 0)
162106, 161logcld 25926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℂ)
163111, 143gtned 11290 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
164 loggt0b 25987 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
165135, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (0 < (log‘2) ↔ 1 < 2)
16635, 165sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (log‘2))
16726, 166ltned 11291 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≠ (log‘2))
168167necomd 2999 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘2) ≠ 0)
169168adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ≠ 0)
170160, 162, 163, 169mulne0d 11807 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
171124, 157, 170redivcld 11983 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
172 5re 12240 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
173172a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℝ)
174 4nn0 12432 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℕ0
175174a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℕ0)
176121, 175reexpcld 14068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℝ)
177173, 176remulcld 11185 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
178110, 156remulcld 11185 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ∈ ℝ)
17948, 110sselid 3942 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℂ)
180111, 119gtned 11290 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ≠ 0)
181179, 162, 180, 169mulne0d 11807 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ≠ 0)
182124, 178, 181redivcld 11983 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
183177, 182remulcld 11185 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
184183, 111readdcld 11184 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
185171, 184remulcld 11185 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
186107, 185remulcld 11185 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
187156resqcld 14030 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ∈ ℝ)
18856a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℤ)
189162, 169, 188expne0d 14057 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ≠ 0)
190107, 187, 189redivcld 11983 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 / ((log‘2)↑2)) ∈ ℝ)
191134relogcld 25978 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘𝑥) ∈ ℝ)
192 2m1e1 12279 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
193 1nn0 12429 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
194192, 193eqeltri 2834 . . . . . . . . . . . . . . . . 17 (2 − 1) ∈ ℕ0
195194a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 − 1) ∈ ℕ0)
196191, 195reexpcld 14068 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
197196, 110, 180redivcld 11983 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
198190, 197remulcld 11185 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
199186, 198readdcld 11184 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
200199ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
201 nfcv 2907 . . . . . . . . . . . 12 𝑥(3(,)(𝑁 + 1))
202201fnmptf 6637 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
203200, 202syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
2045leidd 11721 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 3)
2058lep1d 12086 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑁 + 1))
2065, 8, 87, 13, 205letrd 11312 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (𝑁 + 1))
2075, 87, 204, 206aks4d1p1p6 40530 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
208207fneq1d 6595 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1))))
209203, 208mpbird 256 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)))
210209fndmd 6607 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1)))
211 dvcn 25285 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
212155, 210, 211syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
213 rescncf 24260 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
214104, 213syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
215212, 214mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
216105, 215eqeltrrd 2839 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ))
217 cncfcdm 24261 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21884, 216, 217syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21983, 218mpbird 256 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ))
220174a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℕ0)
22139, 220reexpcld 14068 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑4) ∈ ℝ)
222221fmpttd 7063 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ)
223104resmptd 5994 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)))
22448, 176sselid 3942 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℂ)
225224fmpttd 7063 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ)
22684, 225, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
2276a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℝ)
228156, 175reexpcld 14068 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ∈ ℝ)
229 4z 12537 . . . . . . . . . . . . . . . 16 4 ∈ ℤ
230229a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℤ)
231162, 169, 230expne0d 14057 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ≠ 0)
232227, 228, 231redivcld 11983 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 / ((log‘2)↑4)) ∈ ℝ)
233 4m1e3 12282 . . . . . . . . . . . . . . . . 17 (4 − 1) = 3
234 3nn0 12431 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ0
235233, 234eqeltri 2834 . . . . . . . . . . . . . . . 16 (4 − 1) ∈ ℕ0
236235a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 − 1) ∈ ℕ0)
237191, 236reexpcld 14068 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(4 − 1)) ∈ ℝ)
238237, 110, 180redivcld 11983 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(4 − 1)) / 𝑥) ∈ ℝ)
239232, 238remulcld 11185 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
240239ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
241201fnmptf 6637 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
242240, 241syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
243113a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 3)
244 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))
245 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
246 eqid 2736 . . . . . . . . . . . 12 (4 / ((log‘2)↑4)) = (4 / ((log‘2)↑4))
247 4nn 12236 . . . . . . . . . . . . 13 4 ∈ ℕ
248247a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ)
2495, 87, 243, 206, 244, 245, 246, 248dvrelogpow2b 40525 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
250249fneq1d 6595 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1))))
251242, 250mpbird 256 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)))
252251fndmd 6607 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1)))
253 dvcn 25285 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
254226, 252, 253syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
255 rescncf 24260 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
256104, 255syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
257254, 256mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
258223, 257eqeltrrd 2839 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ))
259 cncfcdm 24261 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
26084, 258, 259syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
261222, 260mpbird 256 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ))
2627, 8, 11, 12aks4d1p1p6 40530 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
26329a1i 11 . . . . 5 (𝜑 → 0 < 4)
264 eqid 2736 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))
265 eqid 2736 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
2667, 8, 263, 12, 264, 265, 246, 248dvrelogpow2b 40525 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
267233a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4(,)𝑁)) → (4 − 1) = 3)
268267oveq2d 7373 . . . . . . 7 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((log‘𝑥)↑(4 − 1)) = ((log‘𝑥)↑3))
269268oveq1d 7372 . . . . . 6 ((𝜑𝑥 ∈ (4(,)𝑁)) → (((log‘𝑥)↑(4 − 1)) / 𝑥) = (((log‘𝑥)↑3) / 𝑥))
270269oveq2d 7373 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) = ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
271270mpteq2dva 5205 . . . 4 (𝜑 → (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
272266, 271eqtrd 2776 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
273 elioore 13294 . . . . 5 (𝑥 ∈ (4(,)𝑁) → 𝑥 ∈ ℝ)
274273adantl 482 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 𝑥 ∈ ℝ)
2756a1i 11 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ∈ ℝ)
276 eliooord 13323 . . . . . . 7 (𝑥 ∈ (4(,)𝑁) → (4 < 𝑥𝑥 < 𝑁))
277276simpld 495 . . . . . 6 (𝑥 ∈ (4(,)𝑁) → 4 < 𝑥)
278277adantl 482 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 < 𝑥)
279275, 274, 278ltled 11303 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ≤ 𝑥)
280274, 279aks4d1p1p7 40531 . . 3 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ≤ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
281 oveq2 7365 . . . . . . . 8 (𝑥 = 4 → (2 logb 𝑥) = (2 logb 4))
282281oveq1d 7372 . . . . . . 7 (𝑥 = 4 → ((2 logb 𝑥)↑5) = ((2 logb 4)↑5))
283282oveq1d 7372 . . . . . 6 (𝑥 = 4 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 4)↑5) + 1))
284283oveq2d 7373 . . . . 5 (𝑥 = 4 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 4)↑5) + 1)))
285284oveq2d 7373 . . . 4 (𝑥 = 4 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 4)↑5) + 1))))
286281oveq1d 7372 . . . 4 (𝑥 = 4 → ((2 logb 𝑥)↑2) = ((2 logb 4)↑2))
287285, 286oveq12d 7375 . . 3 (𝑥 = 4 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)))
288281oveq1d 7372 . . 3 (𝑥 = 4 → ((2 logb 𝑥)↑4) = ((2 logb 4)↑4))
289 oveq2 7365 . . . . . . . . 9 (𝑥 = 𝑁 → (2 logb 𝑥) = (2 logb 𝑁))
290289oveq1d 7372 . . . . . . . 8 (𝑥 = 𝑁 → ((2 logb 𝑥)↑5) = ((2 logb 𝑁)↑5))
291290oveq1d 7372 . . . . . . 7 (𝑥 = 𝑁 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 𝑁)↑5) + 1))
292291oveq2d 7373 . . . . . 6 (𝑥 = 𝑁 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1)))
293292oveq2d 7373 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
29414a1i 11 . . . . . . 7 (𝑥 = 𝑁𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
295294oveq2d 7373 . . . . . 6 (𝑥 = 𝑁 → (2 · 𝐶) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
296295eqcomd 2742 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑁)↑5) + 1))) = (2 · 𝐶))
297293, 296eqtrd 2776 . . . 4 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · 𝐶))
298289oveq1d 7372 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = ((2 logb 𝑁)↑2))
29915a1i 11 . . . . . 6 (𝑥 = 𝑁𝐷 = ((2 logb 𝑁)↑2))
300299eqcomd 2742 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑁)↑2) = 𝐷)
301298, 300eqtrd 2776 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = 𝐷)
302297, 301oveq12d 7375 . . 3 (𝑥 = 𝑁 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · 𝐶) + 𝐷))
303289oveq1d 7372 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = ((2 logb 𝑁)↑4))
30416a1i 11 . . . . 5 (𝑥 = 𝑁𝐸 = ((2 logb 𝑁)↑4))
305304eqcomd 2742 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑁)↑4) = 𝐸)
306303, 305eqtrd 2776 . . 3 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = 𝐸)
307 sq2 14101 . . . . . . . . . . . . . . . 16 (2↑2) = 4
308307oveq2i 7368 . . . . . . . . . . . . . . 15 (2 logb (2↑2)) = (2 logb 4)
309308a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑2)) = (2 logb 4))
310309eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → (2 logb 4) = (2 logb (2↑2)))
311135a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
31256a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
313 relogbexp 26130 . . . . . . . . . . . . . 14 ((2 ∈ ℝ+ ∧ 2 ≠ 1 ∧ 2 ∈ ℤ) → (2 logb (2↑2)) = 2)
314311, 37, 312, 313syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑2)) = 2)
315310, 314eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → (2 logb 4) = 2)
316315oveq1d 7372 . . . . . . . . . . 11 (𝜑 → ((2 logb 4)↑5) = (2↑5))
317316oveq1d 7372 . . . . . . . . . 10 (𝜑 → (((2 logb 4)↑5) + 1) = ((2↑5) + 1))
318317oveq2d 7373 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) = (2 logb ((2↑5) + 1)))
31917a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
320319leidd 11721 . . . . . . . . . . 11 (𝜑 → 2 ≤ 2)
321315, 319eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 4) ∈ ℝ)
32240a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℕ0)
323321, 322reexpcld 14068 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 4)↑5) ∈ ℝ)
324316, 323eqeltrrd 2839 . . . . . . . . . . . 12 (𝜑 → (2↑5) ∈ ℝ)
325324, 33readdcld 11184 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ∈ ℝ)
326322nn0zd 12525 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℤ)
32719a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
328327, 315breqtrrd 5133 . . . . . . . . . . . . . . 15 (𝜑 → 0 < (2 logb 4))
329321, 326, 3283jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)))
330 expgt0 14001 . . . . . . . . . . . . . 14 (((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)) → 0 < ((2 logb 4)↑5))
331329, 330syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 4)↑5))
332331, 316breqtrd 5131 . . . . . . . . . . . 12 (𝜑 → 0 < (2↑5))
333324ltp1d 12085 . . . . . . . . . . . 12 (𝜑 → (2↑5) < ((2↑5) + 1))
33426, 324, 325, 332, 333lttrd 11316 . . . . . . . . . . 11 (𝜑 → 0 < ((2↑5) + 1))
335 6nn0 12434 . . . . . . . . . . . . 13 6 ∈ ℕ0
336335a1i 11 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℕ0)
337319, 336reexpcld 14068 . . . . . . . . . . 11 (𝜑 → (2↑6) ∈ ℝ)
338336nn0zd 12525 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℤ)
339 expgt0 14001 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 6 ∈ ℤ ∧ 0 < 2) → 0 < (2↑6))
340319, 338, 327, 339syl3anc 1371 . . . . . . . . . . 11 (𝜑 → 0 < (2↑6))
341324, 324readdcld 11184 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ∈ ℝ)
34233, 319, 35ltled 11303 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 2)
343319, 322, 342expge1d 14070 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (2↑5))
34433, 324, 324, 343leadd2dd 11770 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + 1) ≤ ((2↑5) + (2↑5)))
345341leidd 11721 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) ≤ ((2↑5) + (2↑5)))
346 df-6 12220 . . . . . . . . . . . . . . . . . . 19 6 = (5 + 1)
347346a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 6 = (5 + 1))
348347oveq2d 7373 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑6) = (2↑(5 + 1)))
349 2cn 12228 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
350349a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
351193a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
352350, 351, 322expaddd 14053 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑(5 + 1)) = ((2↑5) · (2↑1)))
353348, 352eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑6) = ((2↑5) · (2↑1)))
354350exp1d 14046 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑1) = 2)
355354oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑5) · (2↑1)) = ((2↑5) · 2))
356353, 355eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → (2↑6) = ((2↑5) · 2))
35748, 324sselid 3942 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑5) ∈ ℂ)
358357times2d 12397 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑5) · 2) = ((2↑5) + (2↑5)))
359356, 358eqtrd 2776 . . . . . . . . . . . . . 14 (𝜑 → (2↑6) = ((2↑5) + (2↑5)))
360359eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) = (2↑6))
361345, 360breqtrd 5131 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ≤ (2↑6))
362325, 341, 337, 344, 361letrd 11312 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ≤ (2↑6))
363312, 320, 325, 334, 337, 340, 362logblebd 40433 . . . . . . . . . 10 (𝜑 → (2 logb ((2↑5) + 1)) ≤ (2 logb (2↑6)))
364311, 37, 338relogbexpd 40431 . . . . . . . . . 10 (𝜑 → (2 logb (2↑6)) = 6)
365363, 364breqtrd 5131 . . . . . . . . 9 (𝜑 → (2 logb ((2↑5) + 1)) ≤ 6)
366318, 365eqbrtrd 5127 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ 6)
367 6t2e12 12722 . . . . . . . . 9 (6 · 2) = 12
368 6cn 12244 . . . . . . . . . . 11 6 ∈ ℂ
369368a1i 11 . . . . . . . . . 10 (𝜑 → 6 ∈ ℂ)
370 2nn 12226 . . . . . . . . . . . . . 14 2 ∈ ℕ
371193, 370decnncl 12638 . . . . . . . . . . . . 13 12 ∈ ℕ
372371a1i 11 . . . . . . . . . . . 12 (𝜑12 ∈ ℕ)
373372nnred 12168 . . . . . . . . . . 11 (𝜑12 ∈ ℝ)
374373recnd 11183 . . . . . . . . . 10 (𝜑12 ∈ ℂ)
37526, 327gtned 11290 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
376369, 350, 374, 375ldiv 11989 . . . . . . . . 9 (𝜑 → ((6 · 2) = 12 ↔ 6 = (12 / 2)))
377367, 376mpbii 232 . . . . . . . 8 (𝜑 → 6 = (12 / 2))
378366, 377breqtrd 5131 . . . . . . 7 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2))
379323, 33readdcld 11184 . . . . . . . . 9 (𝜑 → (((2 logb 4)↑5) + 1) ∈ ℝ)
38026, 33readdcld 11184 . . . . . . . . . 10 (𝜑 → (0 + 1) ∈ ℝ)
38126ltp1d 12085 . . . . . . . . . 10 (𝜑 → 0 < (0 + 1))
38226, 323, 33, 331ltadd1dd 11766 . . . . . . . . . 10 (𝜑 → (0 + 1) < (((2 logb 4)↑5) + 1))
38326, 380, 379, 381, 382lttrd 11316 . . . . . . . . 9 (𝜑 → 0 < (((2 logb 4)↑5) + 1))
384319, 327, 379, 383, 37relogbcld 40430 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ∈ ℝ)
385384, 373, 311lemuldiv2d 13007 . . . . . . 7 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12 ↔ (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2)))
386378, 385mpbird 256 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12)
387315oveq1d 7372 . . . . . . . . . 10 (𝜑 → ((2 logb 4)↑2) = (2↑2))
388387, 307eqtrdi 2792 . . . . . . . . 9 (𝜑 → ((2 logb 4)↑2) = 4)
389388oveq2d 7373 . . . . . . . 8 (𝜑 → (16 − ((2 logb 4)↑2)) = (16 − 4))
390 2nn0 12430 . . . . . . . . . 10 2 ∈ ℕ0
391 eqid 2736 . . . . . . . . . 10 12 = 12
392 4cn 12238 . . . . . . . . . . 11 4 ∈ ℂ
393 4p2e6 12306 . . . . . . . . . . 11 (4 + 2) = 6
394392, 349, 393addcomli 11347 . . . . . . . . . 10 (2 + 4) = 6
395193, 390, 174, 391, 394decaddi 12678 . . . . . . . . 9 (12 + 4) = 16
396392a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
397 6nn 12242 . . . . . . . . . . . . . 14 6 ∈ ℕ
398193, 397decnncl 12638 . . . . . . . . . . . . 13 16 ∈ ℕ
399398a1i 11 . . . . . . . . . . . 12 (𝜑16 ∈ ℕ)
400399nnred 12168 . . . . . . . . . . 11 (𝜑16 ∈ ℝ)
40148, 400sselid 3942 . . . . . . . . . 10 (𝜑16 ∈ ℂ)
402374, 396, 401addlsub 11571 . . . . . . . . 9 (𝜑 → ((12 + 4) = 16 ↔ 12 = (16 − 4)))
403395, 402mpbii 232 . . . . . . . 8 (𝜑12 = (16 − 4))
404389, 403eqtr4d 2779 . . . . . . 7 (𝜑 → (16 − ((2 logb 4)↑2)) = 12)
405404eqcomd 2742 . . . . . 6 (𝜑12 = (16 − ((2 logb 4)↑2)))
406386, 405breqtrd 5131 . . . . 5 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2)))
407319, 384remulcld 11185 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ)
408321resqcld 14030 . . . . . 6 (𝜑 → ((2 logb 4)↑2) ∈ ℝ)
409 leaddsub 11631 . . . . . 6 (((2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ ∧ ((2 logb 4)↑2) ∈ ℝ ∧ 16 ∈ ℝ) → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
410407, 408, 400, 409syl3anc 1371 . . . . 5 (𝜑 → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
411406, 410mpbird 256 . . . 4 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16)
412315oveq1d 7372 . . . . . 6 (𝜑 → ((2 logb 4)↑4) = (2↑4))
413 2exp4 16957 . . . . . 6 (2↑4) = 16
414412, 413eqtrdi 2792 . . . . 5 (𝜑 → ((2 logb 4)↑4) = 16)
415414eqcomd 2742 . . . 4 (𝜑16 = ((2 logb 4)↑4))
416411, 415breqtrd 5131 . . 3 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ ((2 logb 4)↑4))
4177, 8, 219, 261, 262, 272, 280, 287, 288, 302, 306, 416, 12dvle2 40529 . 2 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
4181, 2, 3, 13, 14, 15, 16, 417aks4d1p1p4 40528 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  5c5 12211  6c6 12212  0cn0 12413  cz 12499  cdc 12618  cuz 12763  +crp 12915  (,)cioo 13264  [,]cicc 13267  ...cfz 13424  cfl 13695  cceil 13696  cexp 13967  cprod 15788  cnccncf 24239   D cdv 25227  logclog 25910   logb clogb 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-ceil 13698  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115
This theorem is referenced by:  aks4d1p1  40533
  Copyright terms: Public domain W3C validator