Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p1p5 42063
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p5.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p5.4 (𝜑 → 4 ≤ 𝑁)
aks4d1p1p5.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p5.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p5.7 𝐸 = ((2 logb 𝑁)↑4)
Assertion
Ref Expression
aks4d1p1p5 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p1p5.1 . 2 (𝜑𝑁 ∈ ℕ)
2 aks4d1p1p5.2 . 2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p1p5.3 . 2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
4 3re 12266 . . . 4 3 ∈ ℝ
54a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
6 4re 12270 . . . 4 4 ∈ ℝ
76a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
81nnred 12201 . . 3 (𝜑𝑁 ∈ ℝ)
95lep1d 12114 . . . 4 (𝜑 → 3 ≤ (3 + 1))
10 3p1e4 12326 . . . 4 (3 + 1) = 4
119, 10breqtrdi 5148 . . 3 (𝜑 → 3 ≤ 4)
12 aks4d1p1p5.4 . . 3 (𝜑 → 4 ≤ 𝑁)
135, 7, 8, 11, 12letrd 11331 . 2 (𝜑 → 3 ≤ 𝑁)
14 aks4d1p1p5.5 . 2 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
15 aks4d1p1p5.6 . 2 𝐷 = ((2 logb 𝑁)↑2)
16 aks4d1p1p5.7 . 2 𝐸 = ((2 logb 𝑁)↑4)
17 2re 12260 . . . . . . . 8 2 ∈ ℝ
1817a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℝ)
19 2pos 12289 . . . . . . . . 9 0 < 2
2019a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 2)
21 elicc2 13372 . . . . . . . . . . . . . . 15 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
227, 8, 21syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2322biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (4[,]𝑁) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2423imp 406 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
2524simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ)
26 0red 11177 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
2726adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
286a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℝ)
29 4pos 12293 . . . . . . . . . . . . 13 0 < 4
3029a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 4)
3124simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
3227, 28, 25, 30, 31ltletrd 11334 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
33 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
34 1lt2 12352 . . . . . . . . . . . . . . 15 1 < 2
3534a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 < 2)
3633, 35ltned 11310 . . . . . . . . . . . . 13 (𝜑 → 1 ≠ 2)
3736necomd 2980 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 1)
3837adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 1)
3918, 20, 25, 32, 38relogbcld 41961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
40 5nn0 12462 . . . . . . . . . . 11 5 ∈ ℕ0
4140a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℕ0)
4239, 41reexpcld 14128 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑5) ∈ ℝ)
43 1red 11175 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ)
4442, 43readdcld 11203 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4527, 43readdcld 11203 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) ∈ ℝ)
4627ltp1d 12113 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (0 + 1))
4741nn0zd 12555 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℤ)
48 ax-resscn 11125 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
4948, 18sselid 3944 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℂ)
5027, 20gtned 11309 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 0)
51 logb1 26679 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5249, 50, 38, 51syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) = 0)
53 1lt4 12357 . . . . . . . . . . . . . . 15 1 < 4
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 4)
5543, 28, 25, 54, 31ltletrd 11334 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 𝑥)
56 2z 12565 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℤ)
5857uzidd 12809 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ (ℤ‘2))
59 1rp 12955 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
6059a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ+)
6125, 32elrpd 12992 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ+)
62 logblt 26694 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6358, 60, 61, 62syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6455, 63mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) < (2 logb 𝑥))
6552, 64eqbrtrrd 5131 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (2 logb 𝑥))
66 expgt0 14060 . . . . . . . . . . 11 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
6739, 47, 65, 66syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < ((2 logb 𝑥)↑5))
6827, 42, 43, 67ltadd1dd 11789 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
6927, 45, 44, 46, 68lttrd 11335 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (((2 logb 𝑥)↑5) + 1))
7018, 20, 44, 69, 38relogbcld 41961 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
7118, 70remulcld 11204 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℝ)
72 0red 11177 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
73 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ (4[,]𝑁))
747, 8jca 511 . . . . . . . . . . . . 13 (𝜑 → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7675, 21syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
7773, 76mpbid 232 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
7877simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
7972, 28, 25, 30, 78ltletrd 11334 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
8018, 20, 25, 79, 38relogbcld 41961 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
8180resqcld 14090 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑2) ∈ ℝ)
8271, 81readdcld 11203 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℝ)
8382fmpttd 7087 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ)
8448a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
85 3lt4 12355 . . . . . . . . . . 11 3 < 4
8685a1i 11 . . . . . . . . . 10 (𝜑 → 3 < 4)
878, 33readdcld 11203 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
888ltp1d 12113 . . . . . . . . . . 11 (𝜑𝑁 < (𝑁 + 1))
897, 8, 87, 12, 88lelttrd 11332 . . . . . . . . . 10 (𝜑 → 4 < (𝑁 + 1))
9086, 89jca 511 . . . . . . . . 9 (𝜑 → (3 < 4 ∧ 4 < (𝑁 + 1)))
915rexrd 11224 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ*)
9287rexrd 11224 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ*)
937rexrd 11224 . . . . . . . . . 10 (𝜑 → 4 ∈ ℝ*)
94 elioo5 13364 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ* ∧ 4 ∈ ℝ*) → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9591, 92, 93, 94syl3anc 1373 . . . . . . . . 9 (𝜑 → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9690, 95mpbird 257 . . . . . . . 8 (𝜑 → 4 ∈ (3(,)(𝑁 + 1)))
975, 7, 8, 86, 12ltletrd 11334 . . . . . . . . . 10 (𝜑 → 3 < 𝑁)
9897, 88jca 511 . . . . . . . . 9 (𝜑 → (3 < 𝑁𝑁 < (𝑁 + 1)))
998rexrd 11224 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ*)
100 elioo5 13364 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ*𝑁 ∈ ℝ*) → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10191, 92, 99, 100syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10298, 101mpbird 257 . . . . . . . 8 (𝜑𝑁 ∈ (3(,)(𝑁 + 1)))
103 iccssioo2 13380 . . . . . . . 8 ((4 ∈ (3(,)(𝑁 + 1)) ∧ 𝑁 ∈ (3(,)(𝑁 + 1))) → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
10496, 102, 103syl2anc 584 . . . . . . 7 (𝜑 → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
105104resmptd 6011 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))))
106 2cnd 12264 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℂ)
10717a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ)
10819a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 2)
109 elioore 13336 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (3(,)(𝑁 + 1)) → 𝑥 ∈ ℝ)
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ)
111 0red 11177 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 ∈ ℝ)
1124a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 ∈ ℝ)
113 3pos 12291 . . . . . . . . . . . . . . . . . . 19 0 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 3)
115 eliooord 13366 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (3(,)(𝑁 + 1)) → (3 < 𝑥𝑥 < (𝑁 + 1)))
116 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((3 < 𝑥𝑥 < (𝑁 + 1)) → 3 < 𝑥)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (3(,)(𝑁 + 1)) → 3 < 𝑥)
118117adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 < 𝑥)
119111, 112, 110, 114, 118lttrd 11335 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 𝑥)
12037adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
121107, 108, 110, 119, 120relogbcld 41961 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℝ)
12240a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℕ0)
123121, 122reexpcld 14128 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℝ)
124 1red 11175 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℝ)
125123, 124readdcld 11203 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
126111, 124readdcld 11203 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) ∈ ℝ)
127111ltp1d 12113 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (0 + 1))
128122nn0zd 12555 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℤ)
12934a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 2)
130 2lt3 12353 . . . . . . . . . . . . . . . . . . . . 21 2 < 3
131130a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 < 3)
132124, 107, 112, 129, 131lttrd 11335 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 3)
133124, 112, 110, 132, 118lttrd 11335 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 𝑥)
134110, 119elrpd 12992 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ+)
135 2rp 12956 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ+)
137134, 136, 129jca32 515 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)))
138 logbgt0b 26703 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
139137, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
140133, 139mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (2 logb 𝑥))
141121, 128, 140, 66syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < ((2 logb 𝑥)↑5))
142111, 123, 124, 141ltadd1dd 11789 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
143111, 126, 125, 127, 142lttrd 11335 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (((2 logb 𝑥)↑5) + 1))
144124, 129ltned 11310 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ≠ 2)
145144necomd 2980 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
146107, 108, 125, 143, 145relogbcld 41961 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
147146recnd 11202 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
148106, 147mulcld 11194 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
14948, 121sselid 3944 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℂ)
150149sqcld 14109 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑2) ∈ ℂ)
151148, 150addcld 11193 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℂ)
152151fmpttd 7087 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ)
153 ioossre 13368 . . . . . . . . . 10 (3(,)(𝑁 + 1)) ⊆ ℝ
154153a1i 11 . . . . . . . . 9 (𝜑 → (3(,)(𝑁 + 1)) ⊆ ℝ)
15584, 152, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
156136relogcld 26532 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℝ)
157125, 156remulcld 11204 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
15848, 123sselid 3944 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℂ)
159 1cnd 11169 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℂ)
160158, 159addcld 11193 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
161111, 108gtned 11309 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 0)
162106, 161logcld 26479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℂ)
163111, 143gtned 11309 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
164 loggt0b 26541 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
165135, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (0 < (log‘2) ↔ 1 < 2)
16635, 165sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (log‘2))
16726, 166ltned 11310 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≠ (log‘2))
168167necomd 2980 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘2) ≠ 0)
169168adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ≠ 0)
170160, 162, 163, 169mulne0d 11830 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
171124, 157, 170redivcld 12010 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
172 5re 12273 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
173172a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℝ)
174 4nn0 12461 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℕ0
175174a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℕ0)
176121, 175reexpcld 14128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℝ)
177173, 176remulcld 11204 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
178110, 156remulcld 11204 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ∈ ℝ)
17948, 110sselid 3944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℂ)
180111, 119gtned 11309 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ≠ 0)
181179, 162, 180, 169mulne0d 11830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ≠ 0)
182124, 178, 181redivcld 12010 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
183177, 182remulcld 11204 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
184183, 111readdcld 11203 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
185171, 184remulcld 11204 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
186107, 185remulcld 11204 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
187156resqcld 14090 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ∈ ℝ)
18856a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℤ)
189162, 169, 188expne0d 14117 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ≠ 0)
190107, 187, 189redivcld 12010 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 / ((log‘2)↑2)) ∈ ℝ)
191134relogcld 26532 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘𝑥) ∈ ℝ)
192 2m1e1 12307 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
193 1nn0 12458 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
194192, 193eqeltri 2824 . . . . . . . . . . . . . . . . 17 (2 − 1) ∈ ℕ0
195194a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 − 1) ∈ ℕ0)
196191, 195reexpcld 14128 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
197196, 110, 180redivcld 12010 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
198190, 197remulcld 11204 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
199186, 198readdcld 11203 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
200199ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
201 nfcv 2891 . . . . . . . . . . . 12 𝑥(3(,)(𝑁 + 1))
202201fnmptf 6654 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
203200, 202syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
2045leidd 11744 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 3)
2058lep1d 12114 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑁 + 1))
2065, 8, 87, 13, 205letrd 11331 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (𝑁 + 1))
2075, 87, 204, 206aks4d1p1p6 42061 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
208207fneq1d 6611 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1))))
209203, 208mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)))
210209fndmd 6623 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1)))
211 dvcn 25823 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
212155, 210, 211syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
213 rescncf 24790 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
214104, 213syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
215212, 214mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
216105, 215eqeltrrd 2829 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ))
217 cncfcdm 24791 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21884, 216, 217syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21983, 218mpbird 257 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ))
220174a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℕ0)
22139, 220reexpcld 14128 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑4) ∈ ℝ)
222221fmpttd 7087 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ)
223104resmptd 6011 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)))
22448, 176sselid 3944 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℂ)
225224fmpttd 7087 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ)
22684, 225, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
2276a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℝ)
228156, 175reexpcld 14128 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ∈ ℝ)
229 4z 12567 . . . . . . . . . . . . . . . 16 4 ∈ ℤ
230229a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℤ)
231162, 169, 230expne0d 14117 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ≠ 0)
232227, 228, 231redivcld 12010 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 / ((log‘2)↑4)) ∈ ℝ)
233 4m1e3 12310 . . . . . . . . . . . . . . . . 17 (4 − 1) = 3
234 3nn0 12460 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ0
235233, 234eqeltri 2824 . . . . . . . . . . . . . . . 16 (4 − 1) ∈ ℕ0
236235a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 − 1) ∈ ℕ0)
237191, 236reexpcld 14128 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(4 − 1)) ∈ ℝ)
238237, 110, 180redivcld 12010 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(4 − 1)) / 𝑥) ∈ ℝ)
239232, 238remulcld 11204 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
240239ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
241201fnmptf 6654 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
242240, 241syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
243113a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 3)
244 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))
245 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
246 eqid 2729 . . . . . . . . . . . 12 (4 / ((log‘2)↑4)) = (4 / ((log‘2)↑4))
247 4nn 12269 . . . . . . . . . . . . 13 4 ∈ ℕ
248247a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ)
2495, 87, 243, 206, 244, 245, 246, 248dvrelogpow2b 42056 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
250249fneq1d 6611 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1))))
251242, 250mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)))
252251fndmd 6623 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1)))
253 dvcn 25823 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
254226, 252, 253syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
255 rescncf 24790 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
256104, 255syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
257254, 256mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
258223, 257eqeltrrd 2829 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ))
259 cncfcdm 24791 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
26084, 258, 259syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
261222, 260mpbird 257 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ))
2627, 8, 11, 12aks4d1p1p6 42061 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
26329a1i 11 . . . . 5 (𝜑 → 0 < 4)
264 eqid 2729 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))
265 eqid 2729 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
2667, 8, 263, 12, 264, 265, 246, 248dvrelogpow2b 42056 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
267233a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4(,)𝑁)) → (4 − 1) = 3)
268267oveq2d 7403 . . . . . . 7 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((log‘𝑥)↑(4 − 1)) = ((log‘𝑥)↑3))
269268oveq1d 7402 . . . . . 6 ((𝜑𝑥 ∈ (4(,)𝑁)) → (((log‘𝑥)↑(4 − 1)) / 𝑥) = (((log‘𝑥)↑3) / 𝑥))
270269oveq2d 7403 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) = ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
271270mpteq2dva 5200 . . . 4 (𝜑 → (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
272266, 271eqtrd 2764 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
273 elioore 13336 . . . . 5 (𝑥 ∈ (4(,)𝑁) → 𝑥 ∈ ℝ)
274273adantl 481 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 𝑥 ∈ ℝ)
2756a1i 11 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ∈ ℝ)
276 eliooord 13366 . . . . . . 7 (𝑥 ∈ (4(,)𝑁) → (4 < 𝑥𝑥 < 𝑁))
277276simpld 494 . . . . . 6 (𝑥 ∈ (4(,)𝑁) → 4 < 𝑥)
278277adantl 481 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 < 𝑥)
279275, 274, 278ltled 11322 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ≤ 𝑥)
280274, 279aks4d1p1p7 42062 . . 3 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ≤ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
281 oveq2 7395 . . . . . . . 8 (𝑥 = 4 → (2 logb 𝑥) = (2 logb 4))
282281oveq1d 7402 . . . . . . 7 (𝑥 = 4 → ((2 logb 𝑥)↑5) = ((2 logb 4)↑5))
283282oveq1d 7402 . . . . . 6 (𝑥 = 4 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 4)↑5) + 1))
284283oveq2d 7403 . . . . 5 (𝑥 = 4 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 4)↑5) + 1)))
285284oveq2d 7403 . . . 4 (𝑥 = 4 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 4)↑5) + 1))))
286281oveq1d 7402 . . . 4 (𝑥 = 4 → ((2 logb 𝑥)↑2) = ((2 logb 4)↑2))
287285, 286oveq12d 7405 . . 3 (𝑥 = 4 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)))
288281oveq1d 7402 . . 3 (𝑥 = 4 → ((2 logb 𝑥)↑4) = ((2 logb 4)↑4))
289 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑁 → (2 logb 𝑥) = (2 logb 𝑁))
290289oveq1d 7402 . . . . . . . 8 (𝑥 = 𝑁 → ((2 logb 𝑥)↑5) = ((2 logb 𝑁)↑5))
291290oveq1d 7402 . . . . . . 7 (𝑥 = 𝑁 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 𝑁)↑5) + 1))
292291oveq2d 7403 . . . . . 6 (𝑥 = 𝑁 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1)))
293292oveq2d 7403 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
29414a1i 11 . . . . . . 7 (𝑥 = 𝑁𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
295294oveq2d 7403 . . . . . 6 (𝑥 = 𝑁 → (2 · 𝐶) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
296295eqcomd 2735 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑁)↑5) + 1))) = (2 · 𝐶))
297293, 296eqtrd 2764 . . . 4 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · 𝐶))
298289oveq1d 7402 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = ((2 logb 𝑁)↑2))
29915a1i 11 . . . . . 6 (𝑥 = 𝑁𝐷 = ((2 logb 𝑁)↑2))
300299eqcomd 2735 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑁)↑2) = 𝐷)
301298, 300eqtrd 2764 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = 𝐷)
302297, 301oveq12d 7405 . . 3 (𝑥 = 𝑁 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · 𝐶) + 𝐷))
303289oveq1d 7402 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = ((2 logb 𝑁)↑4))
30416a1i 11 . . . . 5 (𝑥 = 𝑁𝐸 = ((2 logb 𝑁)↑4))
305304eqcomd 2735 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑁)↑4) = 𝐸)
306303, 305eqtrd 2764 . . 3 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = 𝐸)
307 sq2 14162 . . . . . . . . . . . . . . . 16 (2↑2) = 4
308307oveq2i 7398 . . . . . . . . . . . . . . 15 (2 logb (2↑2)) = (2 logb 4)
309308a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑2)) = (2 logb 4))
310309eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (2 logb 4) = (2 logb (2↑2)))
311135a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
31256a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
313 relogbexp 26690 . . . . . . . . . . . . . 14 ((2 ∈ ℝ+ ∧ 2 ≠ 1 ∧ 2 ∈ ℤ) → (2 logb (2↑2)) = 2)
314311, 37, 312, 313syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑2)) = 2)
315310, 314eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (2 logb 4) = 2)
316315oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((2 logb 4)↑5) = (2↑5))
317316oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((2 logb 4)↑5) + 1) = ((2↑5) + 1))
318317oveq2d 7403 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) = (2 logb ((2↑5) + 1)))
31917a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
320319leidd 11744 . . . . . . . . . . 11 (𝜑 → 2 ≤ 2)
321315, 319eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 4) ∈ ℝ)
32240a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℕ0)
323321, 322reexpcld 14128 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 4)↑5) ∈ ℝ)
324316, 323eqeltrrd 2829 . . . . . . . . . . . 12 (𝜑 → (2↑5) ∈ ℝ)
325324, 33readdcld 11203 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ∈ ℝ)
326322nn0zd 12555 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℤ)
32719a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
328327, 315breqtrrd 5135 . . . . . . . . . . . . . . 15 (𝜑 → 0 < (2 logb 4))
329321, 326, 3283jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)))
330 expgt0 14060 . . . . . . . . . . . . . 14 (((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)) → 0 < ((2 logb 4)↑5))
331329, 330syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 4)↑5))
332331, 316breqtrd 5133 . . . . . . . . . . . 12 (𝜑 → 0 < (2↑5))
333324ltp1d 12113 . . . . . . . . . . . 12 (𝜑 → (2↑5) < ((2↑5) + 1))
33426, 324, 325, 332, 333lttrd 11335 . . . . . . . . . . 11 (𝜑 → 0 < ((2↑5) + 1))
335 6nn0 12463 . . . . . . . . . . . . 13 6 ∈ ℕ0
336335a1i 11 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℕ0)
337319, 336reexpcld 14128 . . . . . . . . . . 11 (𝜑 → (2↑6) ∈ ℝ)
338336nn0zd 12555 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℤ)
339 expgt0 14060 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 6 ∈ ℤ ∧ 0 < 2) → 0 < (2↑6))
340319, 338, 327, 339syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 0 < (2↑6))
341324, 324readdcld 11203 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ∈ ℝ)
34233, 319, 35ltled 11322 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 2)
343319, 322, 342expge1d 14130 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (2↑5))
34433, 324, 324, 343leadd2dd 11793 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + 1) ≤ ((2↑5) + (2↑5)))
345341leidd 11744 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) ≤ ((2↑5) + (2↑5)))
346 df-6 12253 . . . . . . . . . . . . . . . . . . 19 6 = (5 + 1)
347346a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 6 = (5 + 1))
348347oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑6) = (2↑(5 + 1)))
349 2cn 12261 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
350349a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
351193a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
352350, 351, 322expaddd 14113 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑(5 + 1)) = ((2↑5) · (2↑1)))
353348, 352eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑6) = ((2↑5) · (2↑1)))
354350exp1d 14106 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑1) = 2)
355354oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑5) · (2↑1)) = ((2↑5) · 2))
356353, 355eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (2↑6) = ((2↑5) · 2))
35748, 324sselid 3944 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑5) ∈ ℂ)
358357times2d 12426 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑5) · 2) = ((2↑5) + (2↑5)))
359356, 358eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (2↑6) = ((2↑5) + (2↑5)))
360359eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) = (2↑6))
361345, 360breqtrd 5133 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ≤ (2↑6))
362325, 341, 337, 344, 361letrd 11331 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ≤ (2↑6))
363312, 320, 325, 334, 337, 340, 362logblebd 41964 . . . . . . . . . 10 (𝜑 → (2 logb ((2↑5) + 1)) ≤ (2 logb (2↑6)))
364311, 37, 338relogbexpd 41962 . . . . . . . . . 10 (𝜑 → (2 logb (2↑6)) = 6)
365363, 364breqtrd 5133 . . . . . . . . 9 (𝜑 → (2 logb ((2↑5) + 1)) ≤ 6)
366318, 365eqbrtrd 5129 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ 6)
367 6t2e12 12753 . . . . . . . . 9 (6 · 2) = 12
368 6cn 12277 . . . . . . . . . . 11 6 ∈ ℂ
369368a1i 11 . . . . . . . . . 10 (𝜑 → 6 ∈ ℂ)
370 2nn 12259 . . . . . . . . . . . . . 14 2 ∈ ℕ
371193, 370decnncl 12669 . . . . . . . . . . . . 13 12 ∈ ℕ
372371a1i 11 . . . . . . . . . . . 12 (𝜑12 ∈ ℕ)
373372nnred 12201 . . . . . . . . . . 11 (𝜑12 ∈ ℝ)
374373recnd 11202 . . . . . . . . . 10 (𝜑12 ∈ ℂ)
37526, 327gtned 11309 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
376369, 350, 374, 375ldiv 12016 . . . . . . . . 9 (𝜑 → ((6 · 2) = 12 ↔ 6 = (12 / 2)))
377367, 376mpbii 233 . . . . . . . 8 (𝜑 → 6 = (12 / 2))
378366, 377breqtrd 5133 . . . . . . 7 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2))
379323, 33readdcld 11203 . . . . . . . . 9 (𝜑 → (((2 logb 4)↑5) + 1) ∈ ℝ)
38026, 33readdcld 11203 . . . . . . . . . 10 (𝜑 → (0 + 1) ∈ ℝ)
38126ltp1d 12113 . . . . . . . . . 10 (𝜑 → 0 < (0 + 1))
38226, 323, 33, 331ltadd1dd 11789 . . . . . . . . . 10 (𝜑 → (0 + 1) < (((2 logb 4)↑5) + 1))
38326, 380, 379, 381, 382lttrd 11335 . . . . . . . . 9 (𝜑 → 0 < (((2 logb 4)↑5) + 1))
384319, 327, 379, 383, 37relogbcld 41961 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ∈ ℝ)
385384, 373, 311lemuldiv2d 13045 . . . . . . 7 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12 ↔ (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2)))
386378, 385mpbird 257 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12)
387315oveq1d 7402 . . . . . . . . . 10 (𝜑 → ((2 logb 4)↑2) = (2↑2))
388387, 307eqtrdi 2780 . . . . . . . . 9 (𝜑 → ((2 logb 4)↑2) = 4)
389388oveq2d 7403 . . . . . . . 8 (𝜑 → (16 − ((2 logb 4)↑2)) = (16 − 4))
390 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
391 eqid 2729 . . . . . . . . . 10 12 = 12
392 4cn 12271 . . . . . . . . . . 11 4 ∈ ℂ
393 4p2e6 12334 . . . . . . . . . . 11 (4 + 2) = 6
394392, 349, 393addcomli 11366 . . . . . . . . . 10 (2 + 4) = 6
395193, 390, 174, 391, 394decaddi 12709 . . . . . . . . 9 (12 + 4) = 16
396392a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
397 6nn 12275 . . . . . . . . . . . . . 14 6 ∈ ℕ
398193, 397decnncl 12669 . . . . . . . . . . . . 13 16 ∈ ℕ
399398a1i 11 . . . . . . . . . . . 12 (𝜑16 ∈ ℕ)
400399nnred 12201 . . . . . . . . . . 11 (𝜑16 ∈ ℝ)
40148, 400sselid 3944 . . . . . . . . . 10 (𝜑16 ∈ ℂ)
402374, 396, 401addlsub 11594 . . . . . . . . 9 (𝜑 → ((12 + 4) = 16 ↔ 12 = (16 − 4)))
403395, 402mpbii 233 . . . . . . . 8 (𝜑12 = (16 − 4))
404389, 403eqtr4d 2767 . . . . . . 7 (𝜑 → (16 − ((2 logb 4)↑2)) = 12)
405404eqcomd 2735 . . . . . 6 (𝜑12 = (16 − ((2 logb 4)↑2)))
406386, 405breqtrd 5133 . . . . 5 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2)))
407319, 384remulcld 11204 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ)
408321resqcld 14090 . . . . . 6 (𝜑 → ((2 logb 4)↑2) ∈ ℝ)
409 leaddsub 11654 . . . . . 6 (((2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ ∧ ((2 logb 4)↑2) ∈ ℝ ∧ 16 ∈ ℝ) → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
410407, 408, 400, 409syl3anc 1373 . . . . 5 (𝜑 → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
411406, 410mpbird 257 . . . 4 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16)
412315oveq1d 7402 . . . . . 6 (𝜑 → ((2 logb 4)↑4) = (2↑4))
413 2exp4 17055 . . . . . 6 (2↑4) = 16
414412, 413eqtrdi 2780 . . . . 5 (𝜑 → ((2 logb 4)↑4) = 16)
415414eqcomd 2735 . . . 4 (𝜑16 = ((2 logb 4)↑4))
416411, 415breqtrd 5133 . . 3 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ ((2 logb 4)↑4))
4177, 8, 219, 261, 262, 272, 280, 287, 288, 302, 306, 416, 12dvle2 42060 . 2 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
4181, 2, 3, 13, 14, 15, 16, 417aks4d1p1p4 42059 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  0cn0 12442  cz 12529  cdc 12649  cuz 12793  +crp 12951  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  cfl 13752  cceil 13753  cexp 14026  cprod 15869  cnccncf 24769   D cdv 25764  logclog 26463   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  aks4d1p1  42064
  Copyright terms: Public domain W3C validator