Step | Hyp | Ref
| Expression |
1 | | aks4d1p1p5.1 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | aks4d1p1p5.2 |
. 2
⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
3 | | aks4d1p1p5.3 |
. 2
⊢ 𝐵 = (⌈‘((2
logb 𝑁)↑5)) |
4 | | 3re 11983 |
. . . 4
⊢ 3 ∈
ℝ |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → 3 ∈
ℝ) |
6 | | 4re 11987 |
. . . 4
⊢ 4 ∈
ℝ |
7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → 4 ∈
ℝ) |
8 | 1 | nnred 11918 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | 5 | lep1d 11836 |
. . . 4
⊢ (𝜑 → 3 ≤ (3 +
1)) |
10 | | 3p1e4 12048 |
. . . 4
⊢ (3 + 1) =
4 |
11 | 9, 10 | breqtrdi 5111 |
. . 3
⊢ (𝜑 → 3 ≤ 4) |
12 | | aks4d1p1p5.4 |
. . 3
⊢ (𝜑 → 4 ≤ 𝑁) |
13 | 5, 7, 8, 11, 12 | letrd 11062 |
. 2
⊢ (𝜑 → 3 ≤ 𝑁) |
14 | | aks4d1p1p5.5 |
. 2
⊢ 𝐶 = (2 logb (((2
logb 𝑁)↑5)
+ 1)) |
15 | | aks4d1p1p5.6 |
. 2
⊢ 𝐷 = ((2 logb 𝑁)↑2) |
16 | | aks4d1p1p5.7 |
. 2
⊢ 𝐸 = ((2 logb 𝑁)↑4) |
17 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℝ) |
19 | | 2pos 12006 |
. . . . . . . . 9
⊢ 0 <
2 |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < 2) |
21 | | elicc2 13073 |
. . . . . . . . . . . . . . 15
⊢ ((4
∈ ℝ ∧ 𝑁
∈ ℝ) → (𝑥
∈ (4[,]𝑁) ↔
(𝑥 ∈ ℝ ∧ 4
≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
22 | 7, 8, 21 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
23 | 22 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
24 | 23 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁)) |
25 | 24 | simp1d 1140 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ) |
26 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
27 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ) |
28 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℝ) |
29 | | 4pos 12010 |
. . . . . . . . . . . . 13
⊢ 0 <
4 |
30 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < 4) |
31 | 24 | simp2d 1141 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥) |
32 | 27, 28, 25, 30, 31 | ltletrd 11065 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥) |
33 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
34 | | 1lt2 12074 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < 2) |
36 | 33, 35 | ltned 11041 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≠ 2) |
37 | 36 | necomd 2998 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≠ 1) |
38 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ≠ 1) |
39 | 18, 20, 25, 32, 38 | relogbcld 39908 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈
ℝ) |
40 | | 5nn0 12183 |
. . . . . . . . . . 11
⊢ 5 ∈
ℕ0 |
41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 5 ∈
ℕ0) |
42 | 39, 41 | reexpcld 13809 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑5) ∈
ℝ) |
43 | | 1red 10907 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ) |
44 | 42, 43 | readdcld 10935 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (((2 logb 𝑥)↑5) + 1) ∈
ℝ) |
45 | 27, 43 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (0 + 1) ∈
ℝ) |
46 | 27 | ltp1d 11835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < (0 + 1)) |
47 | 41 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℤ) |
48 | | ax-resscn 10859 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
49 | 48, 18 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℂ) |
50 | 27, 20 | gtned 11040 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ≠ 0) |
51 | | logb1 25824 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) =
0) |
52 | 49, 50, 38, 51 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 logb 1) =
0) |
53 | | 1lt4 12079 |
. . . . . . . . . . . . . . 15
⊢ 1 <
4 |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 1 < 4) |
55 | 43, 28, 25, 54, 31 | ltletrd 11065 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 1 < 𝑥) |
56 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℤ) |
58 | 57 | uzidd 12527 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 2 ∈
(ℤ≥‘2)) |
59 | | 1rp 12663 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ+ |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 1 ∈
ℝ+) |
61 | 25, 32 | elrpd 12698 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ+) |
62 | | logblt 25839 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ (ℤ≥‘2) ∧ 1 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2
logb 𝑥))) |
63 | 58, 60, 61, 62 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (1 < 𝑥 ↔ (2 logb 1) < (2
logb 𝑥))) |
64 | 55, 63 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 logb 1) < (2
logb 𝑥)) |
65 | 52, 64 | eqbrtrrd 5094 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < (2 logb 𝑥)) |
66 | | expgt0 13744 |
. . . . . . . . . . 11
⊢ (((2
logb 𝑥) ∈
ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2
logb 𝑥)↑5)) |
67 | 39, 47, 65, 66 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < ((2 logb 𝑥)↑5)) |
68 | 27, 42, 43, 67 | ltadd1dd 11516 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (0 + 1) < (((2 logb
𝑥)↑5) +
1)) |
69 | 27, 45, 44, 46, 68 | lttrd 11066 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < (((2 logb 𝑥)↑5) + 1)) |
70 | 18, 20, 44, 69, 38 | relogbcld 39908 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 logb (((2
logb 𝑥)↑5)
+ 1)) ∈ ℝ) |
71 | 18, 70 | remulcld 10936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) ∈
ℝ) |
72 | | 0red 10909 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ) |
73 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ (4[,]𝑁)) |
74 | 7, 8 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (4 ∈ ℝ ∧
𝑁 ∈
ℝ)) |
75 | 74 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (4 ∈ ℝ ∧ 𝑁 ∈
ℝ)) |
76 | 75, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
77 | 73, 76 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁)) |
78 | 77 | simp2d 1141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥) |
79 | 72, 28, 25, 30, 78 | ltletrd 11065 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥) |
80 | 18, 20, 25, 79, 38 | relogbcld 39908 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈
ℝ) |
81 | 80 | resqcld 13893 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑2) ∈
ℝ) |
82 | 71, 81 | readdcld 10935 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈
ℝ) |
83 | 82 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ) |
84 | 48 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
85 | | 3lt4 12077 |
. . . . . . . . . . 11
⊢ 3 <
4 |
86 | 85 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 3 < 4) |
87 | 8, 33 | readdcld 10935 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
88 | 8 | ltp1d 11835 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
89 | 7, 8, 87, 12, 88 | lelttrd 11063 |
. . . . . . . . . 10
⊢ (𝜑 → 4 < (𝑁 + 1)) |
90 | 86, 89 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (3 < 4 ∧ 4 <
(𝑁 + 1))) |
91 | 5 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 3 ∈
ℝ*) |
92 | 87 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ∈
ℝ*) |
93 | 7 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 4 ∈
ℝ*) |
94 | | elioo5 13065 |
. . . . . . . . . 10
⊢ ((3
∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ* ∧ 4
∈ ℝ*) → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1)))) |
95 | 91, 92, 93, 94 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4
< (𝑁 +
1)))) |
96 | 90, 95 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 4 ∈ (3(,)(𝑁 + 1))) |
97 | 5, 7, 8, 86, 12 | ltletrd 11065 |
. . . . . . . . . 10
⊢ (𝜑 → 3 < 𝑁) |
98 | 97, 88 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (3 < 𝑁 ∧ 𝑁 < (𝑁 + 1))) |
99 | 8 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
100 | | elioo5 13065 |
. . . . . . . . . 10
⊢ ((3
∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ* ∧ 𝑁 ∈ ℝ*)
→ (𝑁 ∈
(3(,)(𝑁 + 1)) ↔ (3
< 𝑁 ∧ 𝑁 < (𝑁 + 1)))) |
101 | 91, 92, 99, 100 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁 ∧ 𝑁 < (𝑁 + 1)))) |
102 | 98, 101 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (3(,)(𝑁 + 1))) |
103 | | iccssioo2 13081 |
. . . . . . . 8
⊢ ((4
∈ (3(,)(𝑁 + 1)) ∧
𝑁 ∈ (3(,)(𝑁 + 1))) → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1))) |
104 | 96, 102, 103 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1))) |
105 | 104 | resmptd 5937 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) |
106 | | 2cnd 11981 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈
ℂ) |
107 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈
ℝ) |
108 | 19 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 2) |
109 | | elioore 13038 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (3(,)(𝑁 + 1)) → 𝑥 ∈ ℝ) |
110 | 109 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ) |
111 | | 0red 10909 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 ∈
ℝ) |
112 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 3 ∈
ℝ) |
113 | | 3pos 12008 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 <
3 |
114 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 3) |
115 | | eliooord 13067 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (3(,)(𝑁 + 1)) → (3 < 𝑥 ∧ 𝑥 < (𝑁 + 1))) |
116 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((3 <
𝑥 ∧ 𝑥 < (𝑁 + 1)) → 3 < 𝑥) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (3(,)(𝑁 + 1)) → 3 < 𝑥) |
118 | 117 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 3 < 𝑥) |
119 | 111, 112,
110, 114, 118 | lttrd 11066 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 𝑥) |
120 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1) |
121 | 107, 108,
110, 119, 120 | relogbcld 39908 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈
ℝ) |
122 | 40 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈
ℕ0) |
123 | 121, 122 | reexpcld 13809 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈
ℝ) |
124 | | 1red 10907 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈
ℝ) |
125 | 123, 124 | readdcld 10935 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈
ℝ) |
126 | 111, 124 | readdcld 10935 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) ∈
ℝ) |
127 | 111 | ltp1d 11835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (0 +
1)) |
128 | 122 | nn0zd 12353 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈
ℤ) |
129 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 2) |
130 | | 2lt3 12075 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 <
3 |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 < 3) |
132 | 124, 107,
112, 129, 131 | lttrd 11066 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 3) |
133 | 124, 112,
110, 132, 118 | lttrd 11066 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 𝑥) |
134 | 110, 119 | elrpd 12698 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ+) |
135 | | 2rp 12664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
136 | 135 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈
ℝ+) |
137 | 134, 136,
129 | jca32 515 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 ∈ ℝ+ ∧ (2 ∈
ℝ+ ∧ 1 < 2))) |
138 | | logbgt0b 25848 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ+
∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2
logb 𝑥) ↔ 1
< 𝑥)) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (0 < (2 logb
𝑥) ↔ 1 < 𝑥)) |
140 | 133, 139 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (2 logb
𝑥)) |
141 | 121, 128,
140, 66 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < ((2 logb
𝑥)↑5)) |
142 | 111, 123,
124, 141 | ltadd1dd 11516 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) < (((2
logb 𝑥)↑5)
+ 1)) |
143 | 111, 126,
125, 127, 142 | lttrd 11066 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (((2 logb
𝑥)↑5) +
1)) |
144 | 124, 129 | ltned 11041 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ≠ 2) |
145 | 144 | necomd 2998 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1) |
146 | 107, 108,
125, 143, 145 | relogbcld 39908 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2
logb 𝑥)↑5)
+ 1)) ∈ ℝ) |
147 | 146 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2
logb 𝑥)↑5)
+ 1)) ∈ ℂ) |
148 | 106, 147 | mulcld 10926 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · (2
logb (((2 logb 𝑥)↑5) + 1))) ∈
ℂ) |
149 | 48, 121 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈
ℂ) |
150 | 149 | sqcld 13790 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑2) ∈
ℂ) |
151 | 148, 150 | addcld 10925 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈
ℂ) |
152 | 151 | fmpttd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 +
1))⟶ℂ) |
153 | | ioossre 13069 |
. . . . . . . . . 10
⊢
(3(,)(𝑁 + 1))
⊆ ℝ |
154 | 153 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (3(,)(𝑁 + 1)) ⊆ ℝ) |
155 | 84, 152, 154 | 3jca 1126 |
. . . . . . . 8
⊢ (𝜑 → (ℝ ⊆ ℂ
∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧
(3(,)(𝑁 + 1)) ⊆
ℝ)) |
156 | 136 | relogcld 25683 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈
ℝ) |
157 | 125, 156 | remulcld 10936 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) ·
(log‘2)) ∈ ℝ) |
158 | 48, 123 | sselid 3915 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈
ℂ) |
159 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈
ℂ) |
160 | 158, 159 | addcld 10925 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈
ℂ) |
161 | 111, 108 | gtned 11040 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 0) |
162 | 106, 161 | logcld 25631 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈
ℂ) |
163 | 111, 143 | gtned 11040 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ≠
0) |
164 | | loggt0b 25692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (2 ∈
ℝ+ → (0 < (log‘2) ↔ 1 <
2)) |
165 | 135, 164 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 <
(log‘2) ↔ 1 < 2) |
166 | 35, 165 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 <
(log‘2)) |
167 | 26, 166 | ltned 11041 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≠
(log‘2)) |
168 | 167 | necomd 2998 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (log‘2) ≠
0) |
169 | 168 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ≠
0) |
170 | 160, 162,
163, 169 | mulne0d 11557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) ·
(log‘2)) ≠ 0) |
171 | 124, 157,
170 | redivcld 11733 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / ((((2 logb
𝑥)↑5) + 1) ·
(log‘2))) ∈ ℝ) |
172 | | 5re 11990 |
. . . . . . . . . . . . . . . . . . 19
⊢ 5 ∈
ℝ |
173 | 172 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈
ℝ) |
174 | | 4nn0 12182 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 4 ∈
ℕ0 |
175 | 174 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈
ℕ0) |
176 | 121, 175 | reexpcld 13809 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈
ℝ) |
177 | 173, 176 | remulcld 10936 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (5 · ((2
logb 𝑥)↑4))
∈ ℝ) |
178 | 110, 156 | remulcld 10936 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ∈
ℝ) |
179 | 48, 110 | sselid 3915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℂ) |
180 | 111, 119 | gtned 11040 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ≠ 0) |
181 | 179, 162,
180, 169 | mulne0d 11557 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ≠
0) |
182 | 124, 178,
181 | redivcld 11733 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / (𝑥 · (log‘2))) ∈
ℝ) |
183 | 177, 182 | remulcld 10936 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((5 · ((2
logb 𝑥)↑4))
· (1 / (𝑥 ·
(log‘2)))) ∈ ℝ) |
184 | 183, 111 | readdcld 10935 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((5 · ((2
logb 𝑥)↑4))
· (1 / (𝑥 ·
(log‘2)))) + 0) ∈ ℝ) |
185 | 171, 184 | remulcld 10936 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((1 / ((((2 logb
𝑥)↑5) + 1) ·
(log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈
ℝ) |
186 | 107, 185 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) ∈ ℝ) |
187 | 156 | resqcld 13893 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ∈
ℝ) |
188 | 56 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈
ℤ) |
189 | 162, 169,
188 | expne0d 13798 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ≠
0) |
190 | 107, 187,
189 | redivcld 11733 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 / ((log‘2)↑2))
∈ ℝ) |
191 | 134 | relogcld 25683 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘𝑥) ∈ ℝ) |
192 | | 2m1e1 12029 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
− 1) = 1 |
193 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
194 | 192, 193 | eqeltri 2835 |
. . . . . . . . . . . . . . . . 17
⊢ (2
− 1) ∈ ℕ0 |
195 | 194 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (2 − 1) ∈
ℕ0) |
196 | 191, 195 | reexpcld 13809 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(2 − 1)) ∈
ℝ) |
197 | 196, 110,
180 | redivcld 11733 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈
ℝ) |
198 | 190, 197 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 / ((log‘2)↑2))
· (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ) |
199 | 186, 198 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ) |
200 | 199 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ) |
201 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(3(,)(𝑁 + 1)) |
202 | 201 | fnmptf 6553 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(3(,)(𝑁 + 1))((2 ·
((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2)))
· (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 /
((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1))) |
203 | 200, 202 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1))) |
204 | 5 | leidd 11471 |
. . . . . . . . . . . 12
⊢ (𝜑 → 3 ≤ 3) |
205 | 8 | lep1d 11836 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ≤ (𝑁 + 1)) |
206 | 5, 8, 87, 13, 205 | letrd 11062 |
. . . . . . . . . . . 12
⊢ (𝜑 → 3 ≤ (𝑁 + 1)) |
207 | 5, 87, 204, 206 | aks4d1p1p6 40009 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))) |
208 | 207 | fneq1d 6510 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))) |
209 | 203, 208 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1))) |
210 | 209 | fndmd 6522 |
. . . . . . . 8
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1))) |
211 | | dvcn 24990 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧
(3(,)(𝑁 + 1)) ⊆
ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ)) |
212 | 155, 210,
211 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ)) |
213 | | rescncf 23966 |
. . . . . . . 8
⊢
((4[,]𝑁) ⊆
(3(,)(𝑁 + 1)) →
((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))) |
214 | 104, 213 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))) |
215 | 212, 214 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)) |
216 | 105, 215 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ)) |
217 | | cncffvrn 23967 |
. . . . 5
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (4[,]𝑁) ↦ ((2
· (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ)) |
218 | 84, 216, 217 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ)) |
219 | 83, 218 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ)) |
220 | 174 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → 4 ∈
ℕ0) |
221 | 39, 220 | reexpcld 13809 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑4) ∈
ℝ) |
222 | 221 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ) |
223 | 104 | resmptd 5937 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4))) |
224 | 48, 176 | sselid 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈
ℂ) |
225 | 224 | fmpttd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 +
1))⟶ℂ) |
226 | 84, 225, 154 | 3jca 1126 |
. . . . . . . 8
⊢ (𝜑 → (ℝ ⊆ ℂ
∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2
logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆
ℝ)) |
227 | 6 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈
ℝ) |
228 | 156, 175 | reexpcld 13809 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ∈
ℝ) |
229 | | 4z 12284 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℤ |
230 | 229 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈
ℤ) |
231 | 162, 169,
230 | expne0d 13798 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ≠
0) |
232 | 227, 228,
231 | redivcld 11733 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (4 / ((log‘2)↑4))
∈ ℝ) |
233 | | 4m1e3 12032 |
. . . . . . . . . . . . . . . . 17
⊢ (4
− 1) = 3 |
234 | | 3nn0 12181 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℕ0 |
235 | 233, 234 | eqeltri 2835 |
. . . . . . . . . . . . . . . 16
⊢ (4
− 1) ∈ ℕ0 |
236 | 235 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (4 − 1) ∈
ℕ0) |
237 | 191, 236 | reexpcld 13809 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(4 − 1)) ∈
ℝ) |
238 | 237, 110,
180 | redivcld 11733 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(4 − 1)) / 𝑥) ∈
ℝ) |
239 | 232, 238 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (3(,)(𝑁 + 1))) → ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ) |
240 | 239 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) ·
(((log‘𝑥)↑(4
− 1)) / 𝑥)) ∈
ℝ) |
241 | 201 | fnmptf 6553 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(3(,)(𝑁 + 1))((4 /
((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1))) |
242 | 240, 241 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1))) |
243 | 113 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 3) |
244 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) |
245 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) |
246 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (4 /
((log‘2)↑4)) = (4 / ((log‘2)↑4)) |
247 | | 4nn 11986 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℕ |
248 | 247 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 4 ∈
ℕ) |
249 | 5, 87, 243, 206, 244, 245, 246, 248 | dvrelogpow2b 40004 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥)))) |
250 | 249 | fneq1d 6510 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))) |
251 | 242, 250 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1))) |
252 | 251 | fndmd 6522 |
. . . . . . . 8
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1))) |
253 | | dvcn 24990 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧
(3(,)(𝑁 + 1)) ⊆
ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ)) |
254 | 226, 252,
253 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ)) |
255 | | rescncf 23966 |
. . . . . . . 8
⊢
((4[,]𝑁) ⊆
(3(,)(𝑁 + 1)) →
((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2
logb 𝑥)↑4))
∈ ((3(,)(𝑁 +
1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))) |
256 | 104, 255 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))) |
257 | 254, 256 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)) |
258 | 223, 257 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ)) |
259 | | cncffvrn 23967 |
. . . . 5
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (4[,]𝑁) ↦ ((2
logb 𝑥)↑4))
∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ)) |
260 | 84, 258, 259 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ)) |
261 | 222, 260 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ)) |
262 | 7, 8, 11, 12 | aks4d1p1p6 40009 |
. . 3
⊢ (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 · (2 logb
(((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))) |
263 | 29 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 < 4) |
264 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4)) |
265 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) |
266 | 7, 8, 263, 12, 264, 265, 246, 248 | dvrelogpow2b 40004 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥)))) |
267 | 233 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → (4 − 1) =
3) |
268 | 267 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → ((log‘𝑥)↑(4 − 1)) = ((log‘𝑥)↑3)) |
269 | 268 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → (((log‘𝑥)↑(4 − 1)) / 𝑥) = (((log‘𝑥)↑3) / 𝑥)) |
270 | 269 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥)) = ((4 / ((log‘2)↑4)) ·
(((log‘𝑥)↑3) /
𝑥))) |
271 | 270 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑3) / 𝑥)))) |
272 | 266, 271 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑3) / 𝑥)))) |
273 | | elioore 13038 |
. . . . 5
⊢ (𝑥 ∈ (4(,)𝑁) → 𝑥 ∈ ℝ) |
274 | 273 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → 𝑥 ∈ ℝ) |
275 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → 4 ∈ ℝ) |
276 | | eliooord 13067 |
. . . . . . 7
⊢ (𝑥 ∈ (4(,)𝑁) → (4 < 𝑥 ∧ 𝑥 < 𝑁)) |
277 | 276 | simpld 494 |
. . . . . 6
⊢ (𝑥 ∈ (4(,)𝑁) → 4 < 𝑥) |
278 | 277 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → 4 < 𝑥) |
279 | 275, 274,
278 | ltled 11053 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → 4 ≤ 𝑥) |
280 | 274, 279 | aks4d1p1p7 40010 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (4(,)𝑁)) → ((2 · ((1 / ((((2
logb 𝑥)↑5)
+ 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) +
0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ≤ ((4 / ((log‘2)↑4))
· (((log‘𝑥)↑3) / 𝑥))) |
281 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 4 → (2 logb
𝑥) = (2 logb
4)) |
282 | 281 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 4 → ((2 logb
𝑥)↑5) = ((2
logb 4)↑5)) |
283 | 282 | oveq1d 7270 |
. . . . . 6
⊢ (𝑥 = 4 → (((2 logb
𝑥)↑5) + 1) = (((2
logb 4)↑5) + 1)) |
284 | 283 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 4 → (2 logb
(((2 logb 𝑥)↑5) + 1)) = (2 logb (((2
logb 4)↑5) + 1))) |
285 | 284 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 4 → (2 · (2
logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2
logb (((2 logb 4)↑5) + 1)))) |
286 | 281 | oveq1d 7270 |
. . . 4
⊢ (𝑥 = 4 → ((2 logb
𝑥)↑2) = ((2
logb 4)↑2)) |
287 | 285, 286 | oveq12d 7273 |
. . 3
⊢ (𝑥 = 4 → ((2 · (2
logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · (2
logb (((2 logb 4)↑5) + 1))) + ((2 logb
4)↑2))) |
288 | 281 | oveq1d 7270 |
. . 3
⊢ (𝑥 = 4 → ((2 logb
𝑥)↑4) = ((2
logb 4)↑4)) |
289 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (2 logb 𝑥) = (2 logb 𝑁)) |
290 | 289 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → ((2 logb 𝑥)↑5) = ((2 logb
𝑁)↑5)) |
291 | 290 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (((2 logb 𝑥)↑5) + 1) = (((2
logb 𝑁)↑5)
+ 1)) |
292 | 291 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (2 logb (((2
logb 𝑥)↑5)
+ 1)) = (2 logb (((2 logb 𝑁)↑5) + 1))) |
293 | 292 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑁 → (2 · (2 logb (((2
logb 𝑥)↑5)
+ 1))) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1)))) |
294 | 14 | a1i 11 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → 𝐶 = (2 logb (((2 logb
𝑁)↑5) +
1))) |
295 | 294 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (2 · 𝐶) = (2 · (2 logb (((2
logb 𝑁)↑5)
+ 1)))) |
296 | 295 | eqcomd 2744 |
. . . . 5
⊢ (𝑥 = 𝑁 → (2 · (2 logb (((2
logb 𝑁)↑5)
+ 1))) = (2 · 𝐶)) |
297 | 293, 296 | eqtrd 2778 |
. . . 4
⊢ (𝑥 = 𝑁 → (2 · (2 logb (((2
logb 𝑥)↑5)
+ 1))) = (2 · 𝐶)) |
298 | 289 | oveq1d 7270 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = ((2 logb
𝑁)↑2)) |
299 | 15 | a1i 11 |
. . . . . 6
⊢ (𝑥 = 𝑁 → 𝐷 = ((2 logb 𝑁)↑2)) |
300 | 299 | eqcomd 2744 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((2 logb 𝑁)↑2) = 𝐷) |
301 | 298, 300 | eqtrd 2778 |
. . . 4
⊢ (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = 𝐷) |
302 | 297, 301 | oveq12d 7273 |
. . 3
⊢ (𝑥 = 𝑁 → ((2 · (2 logb (((2
logb 𝑥)↑5)
+ 1))) + ((2 logb 𝑥)↑2)) = ((2 · 𝐶) + 𝐷)) |
303 | 289 | oveq1d 7270 |
. . . 4
⊢ (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = ((2 logb
𝑁)↑4)) |
304 | 16 | a1i 11 |
. . . . 5
⊢ (𝑥 = 𝑁 → 𝐸 = ((2 logb 𝑁)↑4)) |
305 | 304 | eqcomd 2744 |
. . . 4
⊢ (𝑥 = 𝑁 → ((2 logb 𝑁)↑4) = 𝐸) |
306 | 303, 305 | eqtrd 2778 |
. . 3
⊢ (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = 𝐸) |
307 | | sq2 13842 |
. . . . . . . . . . . . . . . 16
⊢
(2↑2) = 4 |
308 | 307 | oveq2i 7266 |
. . . . . . . . . . . . . . 15
⊢ (2
logb (2↑2)) = (2 logb 4) |
309 | 308 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb
(2↑2)) = (2 logb 4)) |
310 | 309 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 logb 4) = (2
logb (2↑2))) |
311 | 135 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ+) |
312 | 56 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℤ) |
313 | | relogbexp 25835 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ+ ∧ 2 ≠ 1 ∧ 2 ∈ ℤ) → (2
logb (2↑2)) = 2) |
314 | 311, 37, 312, 313 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 logb
(2↑2)) = 2) |
315 | 310, 314 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 logb 4) =
2) |
316 | 315 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 logb
4)↑5) = (2↑5)) |
317 | 316 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝜑 → (((2 logb
4)↑5) + 1) = ((2↑5) + 1)) |
318 | 317 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (2 logb (((2
logb 4)↑5) + 1)) = (2 logb ((2↑5) +
1))) |
319 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ) |
320 | 319 | leidd 11471 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 2) |
321 | 315, 319 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb 4)
∈ ℝ) |
322 | 40 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 5 ∈
ℕ0) |
323 | 321, 322 | reexpcld 13809 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((2 logb
4)↑5) ∈ ℝ) |
324 | 316, 323 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2↑5) ∈
ℝ) |
325 | 324, 33 | readdcld 10935 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2↑5) + 1) ∈
ℝ) |
326 | 322 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 5 ∈
ℤ) |
327 | 19 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 2) |
328 | 327, 315 | breqtrrd 5098 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < (2 logb
4)) |
329 | 321, 326,
328 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 4)
∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb
4))) |
330 | | expgt0 13744 |
. . . . . . . . . . . . . 14
⊢ (((2
logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2
logb 4)) → 0 < ((2 logb
4)↑5)) |
331 | 329, 330 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < ((2 logb
4)↑5)) |
332 | 331, 316 | breqtrd 5096 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 <
(2↑5)) |
333 | 324 | ltp1d 11835 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2↑5) <
((2↑5) + 1)) |
334 | 26, 324, 325, 332, 333 | lttrd 11066 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < ((2↑5) +
1)) |
335 | | 6nn0 12184 |
. . . . . . . . . . . . 13
⊢ 6 ∈
ℕ0 |
336 | 335 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 6 ∈
ℕ0) |
337 | 319, 336 | reexpcld 13809 |
. . . . . . . . . . 11
⊢ (𝜑 → (2↑6) ∈
ℝ) |
338 | 336 | nn0zd 12353 |
. . . . . . . . . . . 12
⊢ (𝜑 → 6 ∈
ℤ) |
339 | | expgt0 13744 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 6 ∈ ℤ ∧ 0 < 2) → 0 <
(2↑6)) |
340 | 319, 338,
327, 339 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 <
(2↑6)) |
341 | 324, 324 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2↑5) + (2↑5))
∈ ℝ) |
342 | 33, 319, 35 | ltled 11053 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ 2) |
343 | 319, 322,
342 | expge1d 13811 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤
(2↑5)) |
344 | 33, 324, 324, 343 | leadd2dd 11520 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2↑5) + 1) ≤
((2↑5) + (2↑5))) |
345 | 341 | leidd 11471 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((2↑5) + (2↑5))
≤ ((2↑5) + (2↑5))) |
346 | | df-6 11970 |
. . . . . . . . . . . . . . . . . . 19
⊢ 6 = (5 +
1) |
347 | 346 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 6 = (5 +
1)) |
348 | 347 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2↑6) = (2↑(5 +
1))) |
349 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℂ |
350 | 349 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ∈
ℂ) |
351 | 193 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℕ0) |
352 | 350, 351,
322 | expaddd 13794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2↑(5 + 1)) =
((2↑5) · (2↑1))) |
353 | 348, 352 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2↑6) = ((2↑5)
· (2↑1))) |
354 | 350 | exp1d 13787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2↑1) =
2) |
355 | 354 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2↑5) ·
(2↑1)) = ((2↑5) · 2)) |
356 | 353, 355 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2↑6) = ((2↑5)
· 2)) |
357 | 48, 324 | sselid 3915 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2↑5) ∈
ℂ) |
358 | 357 | times2d 12147 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((2↑5) · 2) =
((2↑5) + (2↑5))) |
359 | 356, 358 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2↑6) = ((2↑5) +
(2↑5))) |
360 | 359 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((2↑5) + (2↑5))
= (2↑6)) |
361 | 345, 360 | breqtrd 5096 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2↑5) + (2↑5))
≤ (2↑6)) |
362 | 325, 341,
337, 344, 361 | letrd 11062 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2↑5) + 1) ≤
(2↑6)) |
363 | 312, 320,
325, 334, 337, 340, 362 | logblebd 39911 |
. . . . . . . . . 10
⊢ (𝜑 → (2 logb
((2↑5) + 1)) ≤ (2 logb (2↑6))) |
364 | 311, 37, 338 | relogbexpd 39909 |
. . . . . . . . . 10
⊢ (𝜑 → (2 logb
(2↑6)) = 6) |
365 | 363, 364 | breqtrd 5096 |
. . . . . . . . 9
⊢ (𝜑 → (2 logb
((2↑5) + 1)) ≤ 6) |
366 | 318, 365 | eqbrtrd 5092 |
. . . . . . . 8
⊢ (𝜑 → (2 logb (((2
logb 4)↑5) + 1)) ≤ 6) |
367 | | 6t2e12 12470 |
. . . . . . . . 9
⊢ (6
· 2) = ;12 |
368 | | 6cn 11994 |
. . . . . . . . . . 11
⊢ 6 ∈
ℂ |
369 | 368 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 6 ∈
ℂ) |
370 | | 2nn 11976 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
371 | 193, 370 | decnncl 12386 |
. . . . . . . . . . . . 13
⊢ ;12 ∈ ℕ |
372 | 371 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ;12 ∈ ℕ) |
373 | 372 | nnred 11918 |
. . . . . . . . . . 11
⊢ (𝜑 → ;12 ∈ ℝ) |
374 | 373 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → ;12 ∈ ℂ) |
375 | 26, 327 | gtned 11040 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ≠ 0) |
376 | 369, 350,
374, 375 | ldiv 11739 |
. . . . . . . . 9
⊢ (𝜑 → ((6 · 2) = ;12 ↔ 6 = (;12 / 2))) |
377 | 367, 376 | mpbii 232 |
. . . . . . . 8
⊢ (𝜑 → 6 = (;12 / 2)) |
378 | 366, 377 | breqtrd 5096 |
. . . . . . 7
⊢ (𝜑 → (2 logb (((2
logb 4)↑5) + 1)) ≤ (;12 / 2)) |
379 | 323, 33 | readdcld 10935 |
. . . . . . . . 9
⊢ (𝜑 → (((2 logb
4)↑5) + 1) ∈ ℝ) |
380 | 26, 33 | readdcld 10935 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + 1) ∈
ℝ) |
381 | 26 | ltp1d 11835 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (0 +
1)) |
382 | 26, 323, 33, 331 | ltadd1dd 11516 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + 1) < (((2
logb 4)↑5) + 1)) |
383 | 26, 380, 379, 381, 382 | lttrd 11066 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (((2
logb 4)↑5) + 1)) |
384 | 319, 327,
379, 383, 37 | relogbcld 39908 |
. . . . . . . 8
⊢ (𝜑 → (2 logb (((2
logb 4)↑5) + 1)) ∈ ℝ) |
385 | 384, 373,
311 | lemuldiv2d 12751 |
. . . . . . 7
⊢ (𝜑 → ((2 · (2
logb (((2 logb 4)↑5) + 1))) ≤ ;12 ↔ (2 logb (((2 logb
4)↑5) + 1)) ≤ (;12 /
2))) |
386 | 378, 385 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (2 · (2
logb (((2 logb 4)↑5) + 1))) ≤ ;12) |
387 | 315 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 logb
4)↑2) = (2↑2)) |
388 | 387, 307 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝜑 → ((2 logb
4)↑2) = 4) |
389 | 388 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → (;16 − ((2 logb 4)↑2)) = (;16 − 4)) |
390 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
391 | | eqid 2738 |
. . . . . . . . . 10
⊢ ;12 = ;12 |
392 | | 4cn 11988 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
393 | | 4p2e6 12056 |
. . . . . . . . . . 11
⊢ (4 + 2) =
6 |
394 | 392, 349,
393 | addcomli 11097 |
. . . . . . . . . 10
⊢ (2 + 4) =
6 |
395 | 193, 390,
174, 391, 394 | decaddi 12426 |
. . . . . . . . 9
⊢ (;12 + 4) = ;16 |
396 | 392 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 4 ∈
ℂ) |
397 | | 6nn 11992 |
. . . . . . . . . . . . . 14
⊢ 6 ∈
ℕ |
398 | 193, 397 | decnncl 12386 |
. . . . . . . . . . . . 13
⊢ ;16 ∈ ℕ |
399 | 398 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ;16 ∈ ℕ) |
400 | 399 | nnred 11918 |
. . . . . . . . . . 11
⊢ (𝜑 → ;16 ∈ ℝ) |
401 | 48, 400 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝜑 → ;16 ∈ ℂ) |
402 | 374, 396,
401 | addlsub 11321 |
. . . . . . . . 9
⊢ (𝜑 → ((;12 + 4) = ;16 ↔ ;12 = (;16 − 4))) |
403 | 395, 402 | mpbii 232 |
. . . . . . . 8
⊢ (𝜑 → ;12 = (;16 − 4)) |
404 | 389, 403 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → (;16 − ((2 logb 4)↑2)) = ;12) |
405 | 404 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → ;12 = (;16 − ((2 logb
4)↑2))) |
406 | 386, 405 | breqtrd 5096 |
. . . . 5
⊢ (𝜑 → (2 · (2
logb (((2 logb 4)↑5) + 1))) ≤ (;16 − ((2 logb
4)↑2))) |
407 | 319, 384 | remulcld 10936 |
. . . . . 6
⊢ (𝜑 → (2 · (2
logb (((2 logb 4)↑5) + 1))) ∈
ℝ) |
408 | 321 | resqcld 13893 |
. . . . . 6
⊢ (𝜑 → ((2 logb
4)↑2) ∈ ℝ) |
409 | | leaddsub 11381 |
. . . . . 6
⊢ (((2
· (2 logb (((2 logb 4)↑5) + 1))) ∈
ℝ ∧ ((2 logb 4)↑2) ∈ ℝ ∧ ;16 ∈ ℝ) → (((2 ·
(2 logb (((2 logb 4)↑5) + 1))) + ((2 logb
4)↑2)) ≤ ;16 ↔ (2
· (2 logb (((2 logb 4)↑5) + 1))) ≤ (;16 − ((2 logb
4)↑2)))) |
410 | 407, 408,
400, 409 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (((2 · (2
logb (((2 logb 4)↑5) + 1))) + ((2 logb
4)↑2)) ≤ ;16 ↔ (2
· (2 logb (((2 logb 4)↑5) + 1))) ≤ (;16 − ((2 logb
4)↑2)))) |
411 | 406, 410 | mpbird 256 |
. . . 4
⊢ (𝜑 → ((2 · (2
logb (((2 logb 4)↑5) + 1))) + ((2 logb
4)↑2)) ≤ ;16) |
412 | 315 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → ((2 logb
4)↑4) = (2↑4)) |
413 | | 2exp4 16714 |
. . . . . 6
⊢
(2↑4) = ;16 |
414 | 412, 413 | eqtrdi 2795 |
. . . . 5
⊢ (𝜑 → ((2 logb
4)↑4) = ;16) |
415 | 414 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → ;16 = ((2 logb
4)↑4)) |
416 | 411, 415 | breqtrd 5096 |
. . 3
⊢ (𝜑 → ((2 · (2
logb (((2 logb 4)↑5) + 1))) + ((2 logb
4)↑2)) ≤ ((2 logb 4)↑4)) |
417 | 7, 8, 219, 261, 262, 272, 280, 287, 288, 302, 306, 416, 12 | dvle2 40008 |
. 2
⊢ (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸) |
418 | 1, 2, 3, 13, 14, 15, 16, 417 | aks4d1p1p4 40007 |
1
⊢ (𝜑 → 𝐴 < (2↑𝐵)) |