Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p1p5 42056
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p5.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p5.4 (𝜑 → 4 ≤ 𝑁)
aks4d1p1p5.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p5.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p5.7 𝐸 = ((2 logb 𝑁)↑4)
Assertion
Ref Expression
aks4d1p1p5 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p1p5.1 . 2 (𝜑𝑁 ∈ ℕ)
2 aks4d1p1p5.2 . 2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p1p5.3 . 2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
4 3re 12242 . . . 4 3 ∈ ℝ
54a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
6 4re 12246 . . . 4 4 ∈ ℝ
76a1i 11 . . 3 (𝜑 → 4 ∈ ℝ)
81nnred 12177 . . 3 (𝜑𝑁 ∈ ℝ)
95lep1d 12090 . . . 4 (𝜑 → 3 ≤ (3 + 1))
10 3p1e4 12302 . . . 4 (3 + 1) = 4
119, 10breqtrdi 5143 . . 3 (𝜑 → 3 ≤ 4)
12 aks4d1p1p5.4 . . 3 (𝜑 → 4 ≤ 𝑁)
135, 7, 8, 11, 12letrd 11307 . 2 (𝜑 → 3 ≤ 𝑁)
14 aks4d1p1p5.5 . 2 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
15 aks4d1p1p5.6 . 2 𝐷 = ((2 logb 𝑁)↑2)
16 aks4d1p1p5.7 . 2 𝐸 = ((2 logb 𝑁)↑4)
17 2re 12236 . . . . . . . 8 2 ∈ ℝ
1817a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℝ)
19 2pos 12265 . . . . . . . . 9 0 < 2
2019a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 2)
21 elicc2 13348 . . . . . . . . . . . . . . 15 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
227, 8, 21syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2322biimpd 229 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (4[,]𝑁) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
2423imp 406 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
2524simp1d 1142 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ)
26 0red 11153 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
2726adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
286a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℝ)
29 4pos 12269 . . . . . . . . . . . . 13 0 < 4
3029a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 4)
3124simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
3227, 28, 25, 30, 31ltletrd 11310 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
33 1red 11151 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
34 1lt2 12328 . . . . . . . . . . . . . . 15 1 < 2
3534a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 < 2)
3633, 35ltned 11286 . . . . . . . . . . . . 13 (𝜑 → 1 ≠ 2)
3736necomd 2980 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 1)
3837adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 1)
3918, 20, 25, 32, 38relogbcld 41954 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
40 5nn0 12438 . . . . . . . . . . 11 5 ∈ ℕ0
4140a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℕ0)
4239, 41reexpcld 14104 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑5) ∈ ℝ)
43 1red 11151 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ)
4442, 43readdcld 11179 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4527, 43readdcld 11179 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) ∈ ℝ)
4627ltp1d 12089 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (0 + 1))
4741nn0zd 12531 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 5 ∈ ℤ)
48 ax-resscn 11101 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
4948, 18sselid 3941 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℂ)
5027, 20gtned 11285 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ≠ 0)
51 logb1 26712 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5249, 50, 38, 51syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) = 0)
53 1lt4 12333 . . . . . . . . . . . . . . 15 1 < 4
5453a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 4)
5543, 28, 25, 54, 31ltletrd 11310 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 < 𝑥)
56 2z 12541 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ ℤ)
5857uzidd 12785 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 2 ∈ (ℤ‘2))
59 1rp 12931 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
6059a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 1 ∈ ℝ+)
6125, 32elrpd 12968 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ ℝ+)
62 logblt 26727 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6358, 60, 61, 62syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (4[,]𝑁)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6455, 63mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 1) < (2 logb 𝑥))
6552, 64eqbrtrrd 5126 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (2 logb 𝑥))
66 expgt0 14036 . . . . . . . . . . 11 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
6739, 47, 65, 66syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < ((2 logb 𝑥)↑5))
6827, 42, 43, 67ltadd1dd 11765 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
6927, 45, 44, 46, 68lttrd 11311 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < (((2 logb 𝑥)↑5) + 1))
7018, 20, 44, 69, 38relogbcld 41954 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
7118, 70remulcld 11180 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℝ)
72 0red 11153 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 ∈ ℝ)
73 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → 𝑥 ∈ (4[,]𝑁))
747, 8jca 511 . . . . . . . . . . . . 13 (𝜑 → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (4[,]𝑁)) → (4 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7675, 21syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ (4[,]𝑁) ↔ (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁)))
7773, 76mpbid 232 . . . . . . . . . 10 ((𝜑𝑥 ∈ (4[,]𝑁)) → (𝑥 ∈ ℝ ∧ 4 ≤ 𝑥𝑥𝑁))
7877simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ≤ 𝑥)
7972, 28, 25, 30, 78ltletrd 11310 . . . . . . . 8 ((𝜑𝑥 ∈ (4[,]𝑁)) → 0 < 𝑥)
8018, 20, 25, 79, 38relogbcld 41954 . . . . . . 7 ((𝜑𝑥 ∈ (4[,]𝑁)) → (2 logb 𝑥) ∈ ℝ)
8180resqcld 14066 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑2) ∈ ℝ)
8271, 81readdcld 11179 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℝ)
8382fmpttd 7069 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ)
8448a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
85 3lt4 12331 . . . . . . . . . . 11 3 < 4
8685a1i 11 . . . . . . . . . 10 (𝜑 → 3 < 4)
878, 33readdcld 11179 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℝ)
888ltp1d 12089 . . . . . . . . . . 11 (𝜑𝑁 < (𝑁 + 1))
897, 8, 87, 12, 88lelttrd 11308 . . . . . . . . . 10 (𝜑 → 4 < (𝑁 + 1))
9086, 89jca 511 . . . . . . . . 9 (𝜑 → (3 < 4 ∧ 4 < (𝑁 + 1)))
915rexrd 11200 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ*)
9287rexrd 11200 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℝ*)
937rexrd 11200 . . . . . . . . . 10 (𝜑 → 4 ∈ ℝ*)
94 elioo5 13340 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ* ∧ 4 ∈ ℝ*) → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9591, 92, 93, 94syl3anc 1373 . . . . . . . . 9 (𝜑 → (4 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 4 ∧ 4 < (𝑁 + 1))))
9690, 95mpbird 257 . . . . . . . 8 (𝜑 → 4 ∈ (3(,)(𝑁 + 1)))
975, 7, 8, 86, 12ltletrd 11310 . . . . . . . . . 10 (𝜑 → 3 < 𝑁)
9897, 88jca 511 . . . . . . . . 9 (𝜑 → (3 < 𝑁𝑁 < (𝑁 + 1)))
998rexrd 11200 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ*)
100 elioo5 13340 . . . . . . . . . 10 ((3 ∈ ℝ* ∧ (𝑁 + 1) ∈ ℝ*𝑁 ∈ ℝ*) → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10191, 92, 99, 100syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (3(,)(𝑁 + 1)) ↔ (3 < 𝑁𝑁 < (𝑁 + 1))))
10298, 101mpbird 257 . . . . . . . 8 (𝜑𝑁 ∈ (3(,)(𝑁 + 1)))
103 iccssioo2 13356 . . . . . . . 8 ((4 ∈ (3(,)(𝑁 + 1)) ∧ 𝑁 ∈ (3(,)(𝑁 + 1))) → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
10496, 102, 103syl2anc 584 . . . . . . 7 (𝜑 → (4[,]𝑁) ⊆ (3(,)(𝑁 + 1)))
105104resmptd 6000 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))))
106 2cnd 12240 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℂ)
10717a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ)
10819a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 2)
109 elioore 13312 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (3(,)(𝑁 + 1)) → 𝑥 ∈ ℝ)
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ)
111 0red 11153 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 ∈ ℝ)
1124a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 ∈ ℝ)
113 3pos 12267 . . . . . . . . . . . . . . . . . . 19 0 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 3)
115 eliooord 13342 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (3(,)(𝑁 + 1)) → (3 < 𝑥𝑥 < (𝑁 + 1)))
116 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((3 < 𝑥𝑥 < (𝑁 + 1)) → 3 < 𝑥)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (3(,)(𝑁 + 1)) → 3 < 𝑥)
118117adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 3 < 𝑥)
119111, 112, 110, 114, 118lttrd 11311 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < 𝑥)
12037adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
121107, 108, 110, 119, 120relogbcld 41954 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℝ)
12240a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℕ0)
123121, 122reexpcld 14104 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℝ)
124 1red 11151 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℝ)
125123, 124readdcld 11179 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
126111, 124readdcld 11179 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) ∈ ℝ)
127111ltp1d 12089 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (0 + 1))
128122nn0zd 12531 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℤ)
12934a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 2)
130 2lt3 12329 . . . . . . . . . . . . . . . . . . . . 21 2 < 3
131130a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 < 3)
132124, 107, 112, 129, 131lttrd 11311 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 3)
133124, 112, 110, 132, 118lttrd 11311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 < 𝑥)
134110, 119elrpd 12968 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℝ+)
135 2rp 12932 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℝ+)
137134, 136, 129jca32 515 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)))
138 logbgt0b 26736 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ (2 ∈ ℝ+ ∧ 1 < 2)) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
139137, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 < (2 logb 𝑥) ↔ 1 < 𝑥))
140133, 139mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (2 logb 𝑥))
141121, 128, 140, 66syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < ((2 logb 𝑥)↑5))
142111, 123, 124, 141ltadd1dd 11765 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
143111, 126, 125, 127, 142lttrd 11311 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 0 < (((2 logb 𝑥)↑5) + 1))
144124, 129ltned 11286 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ≠ 2)
145144necomd 2980 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 1)
146107, 108, 125, 143, 145relogbcld 41954 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
147146recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
148106, 147mulcld 11170 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
14948, 121sselid 3941 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 logb 𝑥) ∈ ℂ)
150149sqcld 14085 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑2) ∈ ℂ)
151148, 150addcld 11169 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) ∈ ℂ)
152151fmpttd 7069 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ)
153 ioossre 13344 . . . . . . . . . 10 (3(,)(𝑁 + 1)) ⊆ ℝ
154153a1i 11 . . . . . . . . 9 (𝜑 → (3(,)(𝑁 + 1)) ⊆ ℝ)
15584, 152, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
156136relogcld 26565 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℝ)
157125, 156remulcld 11180 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
15848, 123sselid 3941 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑5) ∈ ℂ)
159 1cnd 11145 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 1 ∈ ℂ)
160158, 159addcld 11169 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
161111, 108gtned 11285 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ≠ 0)
162106, 161logcld 26512 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ∈ ℂ)
163111, 143gtned 11285 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
164 loggt0b 26574 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
165135, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (0 < (log‘2) ↔ 1 < 2)
16635, 165sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (log‘2))
16726, 166ltned 11286 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≠ (log‘2))
168167necomd 2980 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘2) ≠ 0)
169168adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘2) ≠ 0)
170160, 162, 163, 169mulne0d 11806 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
171124, 157, 170redivcld 11986 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
172 5re 12249 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
173172a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 5 ∈ ℝ)
174 4nn0 12437 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℕ0
175174a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℕ0)
176121, 175reexpcld 14104 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℝ)
177173, 176remulcld 11180 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
178110, 156remulcld 11180 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ∈ ℝ)
17948, 110sselid 3941 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ∈ ℂ)
180111, 119gtned 11285 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 𝑥 ≠ 0)
181179, 162, 180, 169mulne0d 11806 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (𝑥 · (log‘2)) ≠ 0)
182124, 178, 181redivcld 11986 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
183177, 182remulcld 11180 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
184183, 111readdcld 11179 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
185171, 184remulcld 11180 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
186107, 185remulcld 11180 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
187156resqcld 14066 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ∈ ℝ)
18856a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 2 ∈ ℤ)
189162, 169, 188expne0d 14093 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑2) ≠ 0)
190107, 187, 189redivcld 11986 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 / ((log‘2)↑2)) ∈ ℝ)
191134relogcld 26565 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (log‘𝑥) ∈ ℝ)
192 2m1e1 12283 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
193 1nn0 12434 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
194192, 193eqeltri 2824 . . . . . . . . . . . . . . . . 17 (2 − 1) ∈ ℕ0
195194a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (2 − 1) ∈ ℕ0)
196191, 195reexpcld 14104 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
197196, 110, 180redivcld 11986 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
198190, 197remulcld 11180 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
199186, 198readdcld 11179 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
200199ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ)
201 nfcv 2891 . . . . . . . . . . . 12 𝑥(3(,)(𝑁 + 1))
202201fnmptf 6636 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
203200, 202syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1)))
2045leidd 11720 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 3)
2058lep1d 12090 . . . . . . . . . . . . 13 (𝜑𝑁 ≤ (𝑁 + 1))
2065, 8, 87, 13, 205letrd 11307 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (𝑁 + 1))
2075, 87, 204, 206aks4d1p1p6 42054 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
208207fneq1d 6593 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))) Fn (3(,)(𝑁 + 1))))
209203, 208mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) Fn (3(,)(𝑁 + 1)))
210209fndmd 6605 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1)))
211 dvcn 25856 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
212155, 210, 211syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
213 rescncf 24823 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
214104, 213syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
215212, 214mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
216105, 215eqeltrrd 2829 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ))
217 cncfcdm 24824 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21884, 216, 217syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))):(4[,]𝑁)⟶ℝ))
21983, 218mpbird 257 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2))) ∈ ((4[,]𝑁)–cn→ℝ))
220174a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (4[,]𝑁)) → 4 ∈ ℕ0)
22139, 220reexpcld 14104 . . . . 5 ((𝜑𝑥 ∈ (4[,]𝑁)) → ((2 logb 𝑥)↑4) ∈ ℝ)
222221fmpttd 7069 . . . 4 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ)
223104resmptd 6000 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) = (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)))
22448, 176sselid 3941 . . . . . . . . . 10 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((2 logb 𝑥)↑4) ∈ ℂ)
225224fmpttd 7069 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ)
22684, 225, 1543jca 1128 . . . . . . . 8 (𝜑 → (ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ))
2276a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℝ)
228156, 175reexpcld 14104 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ∈ ℝ)
229 4z 12543 . . . . . . . . . . . . . . . 16 4 ∈ ℤ
230229a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → 4 ∈ ℤ)
231162, 169, 230expne0d 14093 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘2)↑4) ≠ 0)
232227, 228, 231redivcld 11986 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 / ((log‘2)↑4)) ∈ ℝ)
233 4m1e3 12286 . . . . . . . . . . . . . . . . 17 (4 − 1) = 3
234 3nn0 12436 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ0
235233, 234eqeltri 2824 . . . . . . . . . . . . . . . 16 (4 − 1) ∈ ℕ0
236235a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (4 − 1) ∈ ℕ0)
237191, 236reexpcld 14104 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((log‘𝑥)↑(4 − 1)) ∈ ℝ)
238237, 110, 180redivcld 11986 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → (((log‘𝑥)↑(4 − 1)) / 𝑥) ∈ ℝ)
239232, 238remulcld 11180 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (3(,)(𝑁 + 1))) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
240239ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ)
241201fnmptf 6636 . . . . . . . . . . 11 (∀𝑥 ∈ (3(,)(𝑁 + 1))((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) ∈ ℝ → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
242240, 241syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1)))
243113a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 3)
244 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))
245 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
246 eqid 2729 . . . . . . . . . . . 12 (4 / ((log‘2)↑4)) = (4 / ((log‘2)↑4))
247 4nn 12245 . . . . . . . . . . . . 13 4 ∈ ℕ
248247a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ)
2495, 87, 243, 206, 244, 245, 246, 248dvrelogpow2b 42049 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
250249fneq1d 6593 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)) ↔ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) Fn (3(,)(𝑁 + 1))))
251242, 250mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) Fn (3(,)(𝑁 + 1)))
252251fndmd 6605 . . . . . . . 8 (𝜑 → dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1)))
253 dvcn 25856 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)):(3(,)(𝑁 + 1))⟶ℂ ∧ (3(,)(𝑁 + 1)) ⊆ ℝ) ∧ dom (ℝ D (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4))) = (3(,)(𝑁 + 1))) → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
254226, 252, 253syl2anc 584 . . . . . . 7 (𝜑 → (𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ))
255 rescncf 24823 . . . . . . . 8 ((4[,]𝑁) ⊆ (3(,)(𝑁 + 1)) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
256104, 255syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ∈ ((3(,)(𝑁 + 1))–cn→ℂ) → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ)))
257254, 256mpd 15 . . . . . 6 (𝜑 → ((𝑥 ∈ (3(,)(𝑁 + 1)) ↦ ((2 logb 𝑥)↑4)) ↾ (4[,]𝑁)) ∈ ((4[,]𝑁)–cn→ℂ))
258223, 257eqeltrrd 2829 . . . . 5 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ))
259 cncfcdm 24824 . . . . 5 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℂ)) → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
26084, 258, 259syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ) ↔ (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)):(4[,]𝑁)⟶ℝ))
261222, 260mpbird 257 . . 3 (𝜑 → (𝑥 ∈ (4[,]𝑁) ↦ ((2 logb 𝑥)↑4)) ∈ ((4[,]𝑁)–cn→ℝ))
2627, 8, 11, 12aks4d1p1p6 42054 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
26329a1i 11 . . . . 5 (𝜑 → 0 < 4)
264 eqid 2729 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4)) = (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))
265 eqid 2729 . . . . 5 (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)))
2667, 8, 263, 12, 264, 265, 246, 248dvrelogpow2b 42049 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))))
267233a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (4(,)𝑁)) → (4 − 1) = 3)
268267oveq2d 7385 . . . . . . 7 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((log‘𝑥)↑(4 − 1)) = ((log‘𝑥)↑3))
269268oveq1d 7384 . . . . . 6 ((𝜑𝑥 ∈ (4(,)𝑁)) → (((log‘𝑥)↑(4 − 1)) / 𝑥) = (((log‘𝑥)↑3) / 𝑥))
270269oveq2d 7385 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥)) = ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
271270mpteq2dva 5195 . . . 4 (𝜑 → (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑(4 − 1)) / 𝑥))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
272266, 271eqtrd 2764 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (4(,)𝑁) ↦ ((2 logb 𝑥)↑4))) = (𝑥 ∈ (4(,)𝑁) ↦ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥))))
273 elioore 13312 . . . . 5 (𝑥 ∈ (4(,)𝑁) → 𝑥 ∈ ℝ)
274273adantl 481 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 𝑥 ∈ ℝ)
2756a1i 11 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ∈ ℝ)
276 eliooord 13342 . . . . . . 7 (𝑥 ∈ (4(,)𝑁) → (4 < 𝑥𝑥 < 𝑁))
277276simpld 494 . . . . . 6 (𝑥 ∈ (4(,)𝑁) → 4 < 𝑥)
278277adantl 481 . . . . 5 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 < 𝑥)
279275, 274, 278ltled 11298 . . . 4 ((𝜑𝑥 ∈ (4(,)𝑁)) → 4 ≤ 𝑥)
280274, 279aks4d1p1p7 42055 . . 3 ((𝜑𝑥 ∈ (4(,)𝑁)) → ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) ≤ ((4 / ((log‘2)↑4)) · (((log‘𝑥)↑3) / 𝑥)))
281 oveq2 7377 . . . . . . . 8 (𝑥 = 4 → (2 logb 𝑥) = (2 logb 4))
282281oveq1d 7384 . . . . . . 7 (𝑥 = 4 → ((2 logb 𝑥)↑5) = ((2 logb 4)↑5))
283282oveq1d 7384 . . . . . 6 (𝑥 = 4 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 4)↑5) + 1))
284283oveq2d 7385 . . . . 5 (𝑥 = 4 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 4)↑5) + 1)))
285284oveq2d 7385 . . . 4 (𝑥 = 4 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 4)↑5) + 1))))
286281oveq1d 7384 . . . 4 (𝑥 = 4 → ((2 logb 𝑥)↑2) = ((2 logb 4)↑2))
287285, 286oveq12d 7387 . . 3 (𝑥 = 4 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)))
288281oveq1d 7384 . . 3 (𝑥 = 4 → ((2 logb 𝑥)↑4) = ((2 logb 4)↑4))
289 oveq2 7377 . . . . . . . . 9 (𝑥 = 𝑁 → (2 logb 𝑥) = (2 logb 𝑁))
290289oveq1d 7384 . . . . . . . 8 (𝑥 = 𝑁 → ((2 logb 𝑥)↑5) = ((2 logb 𝑁)↑5))
291290oveq1d 7384 . . . . . . 7 (𝑥 = 𝑁 → (((2 logb 𝑥)↑5) + 1) = (((2 logb 𝑁)↑5) + 1))
292291oveq2d 7385 . . . . . 6 (𝑥 = 𝑁 → (2 logb (((2 logb 𝑥)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1)))
293292oveq2d 7385 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
29414a1i 11 . . . . . . 7 (𝑥 = 𝑁𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
295294oveq2d 7385 . . . . . 6 (𝑥 = 𝑁 → (2 · 𝐶) = (2 · (2 logb (((2 logb 𝑁)↑5) + 1))))
296295eqcomd 2735 . . . . 5 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑁)↑5) + 1))) = (2 · 𝐶))
297293, 296eqtrd 2764 . . . 4 (𝑥 = 𝑁 → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) = (2 · 𝐶))
298289oveq1d 7384 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = ((2 logb 𝑁)↑2))
29915a1i 11 . . . . . 6 (𝑥 = 𝑁𝐷 = ((2 logb 𝑁)↑2))
300299eqcomd 2735 . . . . 5 (𝑥 = 𝑁 → ((2 logb 𝑁)↑2) = 𝐷)
301298, 300eqtrd 2764 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑2) = 𝐷)
302297, 301oveq12d 7387 . . 3 (𝑥 = 𝑁 → ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)) = ((2 · 𝐶) + 𝐷))
303289oveq1d 7384 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = ((2 logb 𝑁)↑4))
30416a1i 11 . . . . 5 (𝑥 = 𝑁𝐸 = ((2 logb 𝑁)↑4))
305304eqcomd 2735 . . . 4 (𝑥 = 𝑁 → ((2 logb 𝑁)↑4) = 𝐸)
306303, 305eqtrd 2764 . . 3 (𝑥 = 𝑁 → ((2 logb 𝑥)↑4) = 𝐸)
307 sq2 14138 . . . . . . . . . . . . . . . 16 (2↑2) = 4
308307oveq2i 7380 . . . . . . . . . . . . . . 15 (2 logb (2↑2)) = (2 logb 4)
309308a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑2)) = (2 logb 4))
310309eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (2 logb 4) = (2 logb (2↑2)))
311135a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
31256a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
313 relogbexp 26723 . . . . . . . . . . . . . 14 ((2 ∈ ℝ+ ∧ 2 ≠ 1 ∧ 2 ∈ ℤ) → (2 logb (2↑2)) = 2)
314311, 37, 312, 313syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑2)) = 2)
315310, 314eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (2 logb 4) = 2)
316315oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((2 logb 4)↑5) = (2↑5))
317316oveq1d 7384 . . . . . . . . . 10 (𝜑 → (((2 logb 4)↑5) + 1) = ((2↑5) + 1))
318317oveq2d 7385 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) = (2 logb ((2↑5) + 1)))
31917a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
320319leidd 11720 . . . . . . . . . . 11 (𝜑 → 2 ≤ 2)
321315, 319eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 4) ∈ ℝ)
32240a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℕ0)
323321, 322reexpcld 14104 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 4)↑5) ∈ ℝ)
324316, 323eqeltrrd 2829 . . . . . . . . . . . 12 (𝜑 → (2↑5) ∈ ℝ)
325324, 33readdcld 11179 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ∈ ℝ)
326322nn0zd 12531 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℤ)
32719a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
328327, 315breqtrrd 5130 . . . . . . . . . . . . . . 15 (𝜑 → 0 < (2 logb 4))
329321, 326, 3283jca 1128 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)))
330 expgt0 14036 . . . . . . . . . . . . . 14 (((2 logb 4) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 4)) → 0 < ((2 logb 4)↑5))
331329, 330syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 4)↑5))
332331, 316breqtrd 5128 . . . . . . . . . . . 12 (𝜑 → 0 < (2↑5))
333324ltp1d 12089 . . . . . . . . . . . 12 (𝜑 → (2↑5) < ((2↑5) + 1))
33426, 324, 325, 332, 333lttrd 11311 . . . . . . . . . . 11 (𝜑 → 0 < ((2↑5) + 1))
335 6nn0 12439 . . . . . . . . . . . . 13 6 ∈ ℕ0
336335a1i 11 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℕ0)
337319, 336reexpcld 14104 . . . . . . . . . . 11 (𝜑 → (2↑6) ∈ ℝ)
338336nn0zd 12531 . . . . . . . . . . . 12 (𝜑 → 6 ∈ ℤ)
339 expgt0 14036 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 6 ∈ ℤ ∧ 0 < 2) → 0 < (2↑6))
340319, 338, 327, 339syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 0 < (2↑6))
341324, 324readdcld 11179 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ∈ ℝ)
34233, 319, 35ltled 11298 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 2)
343319, 322, 342expge1d 14106 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (2↑5))
34433, 324, 324, 343leadd2dd 11769 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + 1) ≤ ((2↑5) + (2↑5)))
345341leidd 11720 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) ≤ ((2↑5) + (2↑5)))
346 df-6 12229 . . . . . . . . . . . . . . . . . . 19 6 = (5 + 1)
347346a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 6 = (5 + 1))
348347oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑6) = (2↑(5 + 1)))
349 2cn 12237 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
350349a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
351193a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
352350, 351, 322expaddd 14089 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑(5 + 1)) = ((2↑5) · (2↑1)))
353348, 352eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑6) = ((2↑5) · (2↑1)))
354350exp1d 14082 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑1) = 2)
355354oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑5) · (2↑1)) = ((2↑5) · 2))
356353, 355eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (2↑6) = ((2↑5) · 2))
35748, 324sselid 3941 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑5) ∈ ℂ)
358357times2d 12402 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑5) · 2) = ((2↑5) + (2↑5)))
359356, 358eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (2↑6) = ((2↑5) + (2↑5)))
360359eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → ((2↑5) + (2↑5)) = (2↑6))
361345, 360breqtrd 5128 . . . . . . . . . . . 12 (𝜑 → ((2↑5) + (2↑5)) ≤ (2↑6))
362325, 341, 337, 344, 361letrd 11307 . . . . . . . . . . 11 (𝜑 → ((2↑5) + 1) ≤ (2↑6))
363312, 320, 325, 334, 337, 340, 362logblebd 41957 . . . . . . . . . 10 (𝜑 → (2 logb ((2↑5) + 1)) ≤ (2 logb (2↑6)))
364311, 37, 338relogbexpd 41955 . . . . . . . . . 10 (𝜑 → (2 logb (2↑6)) = 6)
365363, 364breqtrd 5128 . . . . . . . . 9 (𝜑 → (2 logb ((2↑5) + 1)) ≤ 6)
366318, 365eqbrtrd 5124 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ 6)
367 6t2e12 12729 . . . . . . . . 9 (6 · 2) = 12
368 6cn 12253 . . . . . . . . . . 11 6 ∈ ℂ
369368a1i 11 . . . . . . . . . 10 (𝜑 → 6 ∈ ℂ)
370 2nn 12235 . . . . . . . . . . . . . 14 2 ∈ ℕ
371193, 370decnncl 12645 . . . . . . . . . . . . 13 12 ∈ ℕ
372371a1i 11 . . . . . . . . . . . 12 (𝜑12 ∈ ℕ)
373372nnred 12177 . . . . . . . . . . 11 (𝜑12 ∈ ℝ)
374373recnd 11178 . . . . . . . . . 10 (𝜑12 ∈ ℂ)
37526, 327gtned 11285 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
376369, 350, 374, 375ldiv 11992 . . . . . . . . 9 (𝜑 → ((6 · 2) = 12 ↔ 6 = (12 / 2)))
377367, 376mpbii 233 . . . . . . . 8 (𝜑 → 6 = (12 / 2))
378366, 377breqtrd 5128 . . . . . . 7 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2))
379323, 33readdcld 11179 . . . . . . . . 9 (𝜑 → (((2 logb 4)↑5) + 1) ∈ ℝ)
38026, 33readdcld 11179 . . . . . . . . . 10 (𝜑 → (0 + 1) ∈ ℝ)
38126ltp1d 12089 . . . . . . . . . 10 (𝜑 → 0 < (0 + 1))
38226, 323, 33, 331ltadd1dd 11765 . . . . . . . . . 10 (𝜑 → (0 + 1) < (((2 logb 4)↑5) + 1))
38326, 380, 379, 381, 382lttrd 11311 . . . . . . . . 9 (𝜑 → 0 < (((2 logb 4)↑5) + 1))
384319, 327, 379, 383, 37relogbcld 41954 . . . . . . . 8 (𝜑 → (2 logb (((2 logb 4)↑5) + 1)) ∈ ℝ)
385384, 373, 311lemuldiv2d 13021 . . . . . . 7 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12 ↔ (2 logb (((2 logb 4)↑5) + 1)) ≤ (12 / 2)))
386378, 385mpbird 257 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ 12)
387315oveq1d 7384 . . . . . . . . . 10 (𝜑 → ((2 logb 4)↑2) = (2↑2))
388387, 307eqtrdi 2780 . . . . . . . . 9 (𝜑 → ((2 logb 4)↑2) = 4)
389388oveq2d 7385 . . . . . . . 8 (𝜑 → (16 − ((2 logb 4)↑2)) = (16 − 4))
390 2nn0 12435 . . . . . . . . . 10 2 ∈ ℕ0
391 eqid 2729 . . . . . . . . . 10 12 = 12
392 4cn 12247 . . . . . . . . . . 11 4 ∈ ℂ
393 4p2e6 12310 . . . . . . . . . . 11 (4 + 2) = 6
394392, 349, 393addcomli 11342 . . . . . . . . . 10 (2 + 4) = 6
395193, 390, 174, 391, 394decaddi 12685 . . . . . . . . 9 (12 + 4) = 16
396392a1i 11 . . . . . . . . . 10 (𝜑 → 4 ∈ ℂ)
397 6nn 12251 . . . . . . . . . . . . . 14 6 ∈ ℕ
398193, 397decnncl 12645 . . . . . . . . . . . . 13 16 ∈ ℕ
399398a1i 11 . . . . . . . . . . . 12 (𝜑16 ∈ ℕ)
400399nnred 12177 . . . . . . . . . . 11 (𝜑16 ∈ ℝ)
40148, 400sselid 3941 . . . . . . . . . 10 (𝜑16 ∈ ℂ)
402374, 396, 401addlsub 11570 . . . . . . . . 9 (𝜑 → ((12 + 4) = 16 ↔ 12 = (16 − 4)))
403395, 402mpbii 233 . . . . . . . 8 (𝜑12 = (16 − 4))
404389, 403eqtr4d 2767 . . . . . . 7 (𝜑 → (16 − ((2 logb 4)↑2)) = 12)
405404eqcomd 2735 . . . . . 6 (𝜑12 = (16 − ((2 logb 4)↑2)))
406386, 405breqtrd 5128 . . . . 5 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2)))
407319, 384remulcld 11180 . . . . . 6 (𝜑 → (2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ)
408321resqcld 14066 . . . . . 6 (𝜑 → ((2 logb 4)↑2) ∈ ℝ)
409 leaddsub 11630 . . . . . 6 (((2 · (2 logb (((2 logb 4)↑5) + 1))) ∈ ℝ ∧ ((2 logb 4)↑2) ∈ ℝ ∧ 16 ∈ ℝ) → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
410407, 408, 400, 409syl3anc 1373 . . . . 5 (𝜑 → (((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16 ↔ (2 · (2 logb (((2 logb 4)↑5) + 1))) ≤ (16 − ((2 logb 4)↑2))))
411406, 410mpbird 257 . . . 4 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ 16)
412315oveq1d 7384 . . . . . 6 (𝜑 → ((2 logb 4)↑4) = (2↑4))
413 2exp4 17031 . . . . . 6 (2↑4) = 16
414412, 413eqtrdi 2780 . . . . 5 (𝜑 → ((2 logb 4)↑4) = 16)
415414eqcomd 2735 . . . 4 (𝜑16 = ((2 logb 4)↑4))
416411, 415breqtrd 5128 . . 3 (𝜑 → ((2 · (2 logb (((2 logb 4)↑5) + 1))) + ((2 logb 4)↑2)) ≤ ((2 logb 4)↑4))
4177, 8, 219, 261, 262, 272, 280, 287, 288, 302, 306, 416, 12dvle2 42053 . 2 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
4181, 2, 3, 13, 14, 15, 16, 417aks4d1p1p4 42052 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3911   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  6c6 12221  0cn0 12418  cz 12505  cdc 12625  cuz 12769  +crp 12927  (,)cioo 13282  [,]cicc 13285  ...cfz 13444  cfl 13728  cceil 13729  cexp 14002  cprod 15845  cnccncf 24802   D cdv 25797  logclog 26496   logb clogb 26707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499  df-logb 26708
This theorem is referenced by:  aks4d1p1  42057
  Copyright terms: Public domain W3C validator