![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 13410 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11323 | . . 3 class ℝ* | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑧 |
8 | cle 11325 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5166 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1536 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5166 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3443 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7450 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1537 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 13446 elicc1 13451 iccss 13475 iccssioo 13476 iccss2 13478 iccssico 13479 iccssxr 13490 ioossicc 13493 icossicc 13496 iocssicc 13497 iccf 13508 ioounsn 13537 snunioo 13538 snunico 13539 snunioc 13540 ioodisj 13542 leordtval2 23241 iccordt 23243 lecldbas 23248 ioombl 25619 itgspliticc 25892 psercnlem2 26486 tanord1 26597 cvmliftlem10 35262 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 snunioo1 45430 iccin 48576 iccdisj2 48577 |
Copyright terms: Public domain | W3C validator |