| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version | ||
| Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicc 13309 | . 2 class [,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11207 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11209 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5107 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5107 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 13 | 12, 6, 4 | crab 3405 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7389 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iccval 13345 elicc1 13350 iccss 13375 iccssioo 13376 iccss2 13378 iccssico 13379 iccssxr 13391 ioossicc 13394 icossicc 13397 iocssicc 13398 iccf 13409 ioounsn 13438 snunioo 13439 snunico 13440 snunioc 13441 ioodisj 13443 leordtval2 23099 iccordt 23101 lecldbas 23106 ioombl 25466 itgspliticc 25738 psercnlem2 26334 tanord1 26446 cvmliftlem10 35281 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 snunioo1 45510 iccin 48884 iccdisj2 48885 |
| Copyright terms: Public domain | W3C validator |