Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 13011 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10939 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | cle 10941 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5070 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5070 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3067 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7257 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1539 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 13047 elicc1 13052 iccss 13076 iccssioo 13077 iccss2 13079 iccssico 13080 iccssxr 13091 ioossicc 13094 icossicc 13097 iocssicc 13098 iccf 13109 ioounsn 13138 snunioo 13139 snunico 13140 snunioc 13141 ioodisj 13143 leordtval2 22271 iccordt 22273 lecldbas 22278 ioombl 24634 itgspliticc 24906 psercnlem2 25488 tanord1 25598 cvmliftlem10 33156 ftc1anclem7 35783 ftc1anclem8 35784 ftc1anc 35785 snunioo1 42940 iccin 46078 iccdisj2 46079 |
Copyright terms: Public domain | W3C validator |