![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 13327 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11247 | . . 3 class ℝ* | |
5 | 2 | cv 1541 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | cle 11249 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5149 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1541 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5149 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 397 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3433 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7411 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1542 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 13363 elicc1 13368 iccss 13392 iccssioo 13393 iccss2 13395 iccssico 13396 iccssxr 13407 ioossicc 13410 icossicc 13413 iocssicc 13414 iccf 13425 ioounsn 13454 snunioo 13455 snunico 13456 snunioc 13457 ioodisj 13459 leordtval2 22716 iccordt 22718 lecldbas 22723 ioombl 25082 itgspliticc 25354 psercnlem2 25936 tanord1 26046 cvmliftlem10 34285 ftc1anclem7 36567 ftc1anclem8 36568 ftc1anc 36569 snunioo1 44225 iccin 47529 iccdisj2 47530 |
Copyright terms: Public domain | W3C validator |