| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version | ||
| Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicc 13251 | . 2 class [,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11148 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11150 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5092 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5092 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 13 | 12, 6, 4 | crab 3394 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7351 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iccval 13287 elicc1 13292 iccss 13317 iccssioo 13318 iccss2 13320 iccssico 13321 iccssxr 13333 ioossicc 13336 icossicc 13339 iocssicc 13340 iccf 13351 ioounsn 13380 snunioo 13381 snunico 13382 snunioc 13383 ioodisj 13385 leordtval2 23097 iccordt 23099 lecldbas 23104 ioombl 25464 itgspliticc 25736 psercnlem2 26332 tanord1 26444 cvmliftlem10 35267 ftc1anclem7 37679 ftc1anclem8 37680 ftc1anc 37681 snunioo1 45493 iccin 48880 iccdisj2 48881 |
| Copyright terms: Public domain | W3C validator |