![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 12591 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10520 | . . 3 class ℝ* | |
5 | 2 | cv 1521 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1521 | . . . . . 6 class 𝑧 |
8 | cle 10522 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 4962 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1521 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 4962 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 396 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3109 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7018 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1522 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 12627 elicc1 12632 iccss 12654 iccssioo 12655 iccss2 12657 iccssico 12658 iccssxr 12669 ioossicc 12672 icossicc 12674 iocssicc 12675 iccf 12686 ioounsn 12713 snunioo 12714 snunico 12715 snunioc 12716 ioodisj 12718 leordtval2 21504 iccordt 21506 lecldbas 21511 ioombl 23849 itgspliticc 24120 psercnlem2 24695 tanord1 24802 cvmliftlem10 32149 ftc1anclem7 34504 ftc1anclem8 34505 ftc1anc 34506 snunioo1 41330 |
Copyright terms: Public domain | W3C validator |