MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13320
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13316 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11214 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11216 . . . . . 6 class
95, 7, 8wbr 5110 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
117, 10, 8wbr 5110 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3408 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7392 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1540 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13352  elicc1  13357  iccss  13382  iccssioo  13383  iccss2  13385  iccssico  13386  iccssxr  13398  ioossicc  13401  icossicc  13404  iocssicc  13405  iccf  13416  ioounsn  13445  snunioo  13446  snunico  13447  snunioc  13448  ioodisj  13450  leordtval2  23106  iccordt  23108  lecldbas  23113  ioombl  25473  itgspliticc  25745  psercnlem2  26341  tanord1  26453  cvmliftlem10  35288  ftc1anclem7  37700  ftc1anclem8  37701  ftc1anc  37702  snunioo1  45517  iccin  48888  iccdisj2  48889
  Copyright terms: Public domain W3C validator