Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 13091 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11017 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | cle 11019 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5075 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5075 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 396 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3069 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7286 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1539 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 13127 elicc1 13132 iccss 13156 iccssioo 13157 iccss2 13159 iccssico 13160 iccssxr 13171 ioossicc 13174 icossicc 13177 iocssicc 13178 iccf 13189 ioounsn 13218 snunioo 13219 snunico 13220 snunioc 13221 ioodisj 13223 leordtval2 22372 iccordt 22374 lecldbas 22379 ioombl 24738 itgspliticc 25010 psercnlem2 25592 tanord1 25702 cvmliftlem10 33265 ftc1anclem7 35865 ftc1anclem8 35866 ftc1anc 35867 snunioo1 43057 iccin 46201 iccdisj2 46202 |
Copyright terms: Public domain | W3C validator |