| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version | ||
| Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicc 13316 | . 2 class [,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11214 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11216 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5110 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5110 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 13 | 12, 6, 4 | crab 3408 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7392 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iccval 13352 elicc1 13357 iccss 13382 iccssioo 13383 iccss2 13385 iccssico 13386 iccssxr 13398 ioossicc 13401 icossicc 13404 iocssicc 13405 iccf 13416 ioounsn 13445 snunioo 13446 snunico 13447 snunioc 13448 ioodisj 13450 leordtval2 23106 iccordt 23108 lecldbas 23113 ioombl 25473 itgspliticc 25745 psercnlem2 26341 tanord1 26453 cvmliftlem10 35288 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 snunioo1 45517 iccin 48888 iccdisj2 48889 |
| Copyright terms: Public domain | W3C validator |