MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13255
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13251 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11148 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11150 . . . . . 6 class
95, 7, 8wbr 5092 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
117, 10, 8wbr 5092 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3394 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7351 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1540 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13287  elicc1  13292  iccss  13317  iccssioo  13318  iccss2  13320  iccssico  13321  iccssxr  13333  ioossicc  13336  icossicc  13339  iocssicc  13340  iccf  13351  ioounsn  13380  snunioo  13381  snunico  13382  snunioc  13383  ioodisj  13385  leordtval2  23097  iccordt  23099  lecldbas  23104  ioombl  25464  itgspliticc  25736  psercnlem2  26332  tanord1  26444  cvmliftlem10  35267  ftc1anclem7  37679  ftc1anclem8  37680  ftc1anc  37681  snunioo1  45493  iccin  48880  iccdisj2  48881
  Copyright terms: Public domain W3C validator