MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13095
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13091 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11017 . . 3 class *
52cv 1538 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 cle 11019 . . . . . 6 class
95, 7, 8wbr 5075 . . . . 5 wff 𝑥𝑧
103cv 1538 . . . . . 6 class 𝑦
117, 10, 8wbr 5075 . . . . 5 wff 𝑧𝑦
129, 11wa 396 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3069 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7286 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1539 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13127  elicc1  13132  iccss  13156  iccssioo  13157  iccss2  13159  iccssico  13160  iccssxr  13171  ioossicc  13174  icossicc  13177  iocssicc  13178  iccf  13189  ioounsn  13218  snunioo  13219  snunico  13220  snunioc  13221  ioodisj  13223  leordtval2  22372  iccordt  22374  lecldbas  22379  ioombl  24738  itgspliticc  25010  psercnlem2  25592  tanord1  25702  cvmliftlem10  33265  ftc1anclem7  35865  ftc1anclem8  35866  ftc1anc  35867  snunioo1  43057  iccin  46201  iccdisj2  46202
  Copyright terms: Public domain W3C validator