MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13367
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13363 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11266 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11268 . . . . . 6 class
95, 7, 8wbr 5119 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
117, 10, 8wbr 5119 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3415 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7405 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1540 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13399  elicc1  13404  iccss  13429  iccssioo  13430  iccss2  13432  iccssico  13433  iccssxr  13445  ioossicc  13448  icossicc  13451  iocssicc  13452  iccf  13463  ioounsn  13492  snunioo  13493  snunico  13494  snunioc  13495  ioodisj  13497  leordtval2  23148  iccordt  23150  lecldbas  23155  ioombl  25516  itgspliticc  25788  psercnlem2  26384  tanord1  26496  cvmliftlem10  35262  ftc1anclem7  37669  ftc1anclem8  37670  ftc1anc  37671  snunioo1  45489  iccin  48818  iccdisj2  48819
  Copyright terms: Public domain W3C validator