![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 13386 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11291 | . . 3 class ℝ* | |
5 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | cle 11293 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5147 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5147 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7432 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1536 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 13422 elicc1 13427 iccss 13451 iccssioo 13452 iccss2 13454 iccssico 13455 iccssxr 13466 ioossicc 13469 icossicc 13472 iocssicc 13473 iccf 13484 ioounsn 13513 snunioo 13514 snunico 13515 snunioc 13516 ioodisj 13518 leordtval2 23235 iccordt 23237 lecldbas 23242 ioombl 25613 itgspliticc 25886 psercnlem2 26482 tanord1 26593 cvmliftlem10 35278 ftc1anclem7 37685 ftc1anclem8 37686 ftc1anc 37687 snunioo1 45464 iccin 48692 iccdisj2 48693 |
Copyright terms: Public domain | W3C validator |