MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13390
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13386 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11291 . . 3 class *
52cv 1535 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1535 . . . . . 6 class 𝑧
8 cle 11293 . . . . . 6 class
95, 7, 8wbr 5147 . . . . 5 wff 𝑥𝑧
103cv 1535 . . . . . 6 class 𝑦
117, 10, 8wbr 5147 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3432 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7432 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1536 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13422  elicc1  13427  iccss  13451  iccssioo  13452  iccss2  13454  iccssico  13455  iccssxr  13466  ioossicc  13469  icossicc  13472  iocssicc  13473  iccf  13484  ioounsn  13513  snunioo  13514  snunico  13515  snunioc  13516  ioodisj  13518  leordtval2  23235  iccordt  23237  lecldbas  23242  ioombl  25613  itgspliticc  25886  psercnlem2  26482  tanord1  26593  cvmliftlem10  35278  ftc1anclem7  37685  ftc1anclem8  37686  ftc1anc  37687  snunioo1  45464  iccin  48692  iccdisj2  48693
  Copyright terms: Public domain W3C validator