| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version | ||
| Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicc 13243 | . 2 class [,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11140 | . . 3 class ℝ* | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | cle 11142 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5086 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5086 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 13 | 12, 6, 4 | crab 3395 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7343 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 15 | 1, 14 | wceq 1541 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iccval 13279 elicc1 13284 iccss 13309 iccssioo 13310 iccss2 13312 iccssico 13313 iccssxr 13325 ioossicc 13328 icossicc 13331 iocssicc 13332 iccf 13343 ioounsn 13372 snunioo 13373 snunico 13374 snunioc 13375 ioodisj 13377 leordtval2 23122 iccordt 23124 lecldbas 23129 ioombl 25488 itgspliticc 25760 psercnlem2 26356 tanord1 26468 cvmliftlem10 35330 ftc1anclem7 37739 ftc1anclem8 37740 ftc1anc 37741 snunioo1 45552 iccin 48927 iccdisj2 48928 |
| Copyright terms: Public domain | W3C validator |