MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13247
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13243 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11140 . . 3 class *
52cv 1540 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
8 cle 11142 . . . . . 6 class
95, 7, 8wbr 5086 . . . . 5 wff 𝑥𝑧
103cv 1540 . . . . . 6 class 𝑦
117, 10, 8wbr 5086 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3395 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7343 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1541 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13279  elicc1  13284  iccss  13309  iccssioo  13310  iccss2  13312  iccssico  13313  iccssxr  13325  ioossicc  13328  icossicc  13331  iocssicc  13332  iccf  13343  ioounsn  13372  snunioo  13373  snunico  13374  snunioc  13375  ioodisj  13377  leordtval2  23122  iccordt  23124  lecldbas  23129  ioombl  25488  itgspliticc  25760  psercnlem2  26356  tanord1  26468  cvmliftlem10  35330  ftc1anclem7  37739  ftc1anclem8  37740  ftc1anc  37741  snunioo1  45552  iccin  48927  iccdisj2  48928
  Copyright terms: Public domain W3C validator