MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13331
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13327 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11247 . . 3 class *
52cv 1541 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1541 . . . . . 6 class 𝑧
8 cle 11249 . . . . . 6 class
95, 7, 8wbr 5149 . . . . 5 wff 𝑥𝑧
103cv 1541 . . . . . 6 class 𝑦
117, 10, 8wbr 5149 . . . . 5 wff 𝑧𝑦
129, 11wa 397 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3433 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7411 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1542 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13363  elicc1  13368  iccss  13392  iccssioo  13393  iccss2  13395  iccssico  13396  iccssxr  13407  ioossicc  13410  icossicc  13413  iocssicc  13414  iccf  13425  ioounsn  13454  snunioo  13455  snunico  13456  snunioc  13457  ioodisj  13459  leordtval2  22716  iccordt  22718  lecldbas  22723  ioombl  25082  itgspliticc  25354  psercnlem2  25936  tanord1  26046  cvmliftlem10  34285  ftc1anclem7  36567  ftc1anclem8  36568  ftc1anc  36569  snunioo1  44225  iccin  47529  iccdisj2  47530
  Copyright terms: Public domain W3C validator