MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-icc Structured version   Visualization version   GIF version

Definition df-icc 13015
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 13011 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 10939 . . 3 class *
52cv 1538 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 cle 10941 . . . . . 6 class
95, 7, 8wbr 5070 . . . . 5 wff 𝑥𝑧
103cv 1538 . . . . . 6 class 𝑦
117, 10, 8wbr 5070 . . . . 5 wff 𝑧𝑦
129, 11wa 395 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 3067 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 7257 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1539 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iccval  13047  elicc1  13052  iccss  13076  iccssioo  13077  iccss2  13079  iccssico  13080  iccssxr  13091  ioossicc  13094  icossicc  13097  iocssicc  13098  iccf  13109  ioounsn  13138  snunioo  13139  snunico  13140  snunioc  13141  ioodisj  13143  leordtval2  22271  iccordt  22273  lecldbas  22278  ioombl  24634  itgspliticc  24906  psercnlem2  25488  tanord1  25598  cvmliftlem10  33156  ftc1anclem7  35783  ftc1anclem8  35784  ftc1anc  35785  snunioo1  42940  iccin  46078  iccdisj2  46079
  Copyright terms: Public domain W3C validator