| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version | ||
| Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicc 13363 | . 2 class [,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11266 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11268 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5119 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5119 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 13 | 12, 6, 4 | crab 3415 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7405 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iccval 13399 elicc1 13404 iccss 13429 iccssioo 13430 iccss2 13432 iccssico 13433 iccssxr 13445 ioossicc 13448 icossicc 13451 iocssicc 13452 iccf 13463 ioounsn 13492 snunioo 13493 snunico 13494 snunioc 13495 ioodisj 13497 leordtval2 23148 iccordt 23150 lecldbas 23155 ioombl 25516 itgspliticc 25788 psercnlem2 26384 tanord1 26496 cvmliftlem10 35262 ftc1anclem7 37669 ftc1anclem8 37670 ftc1anc 37671 snunioo1 45489 iccin 48818 iccdisj2 48819 |
| Copyright terms: Public domain | W3C validator |