![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxval | Structured version Visualization version GIF version |
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4889 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝑧)) | |
2 | 1 | anbi1d 623 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦))) |
3 | 2 | rabbidv 3386 | . 2 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
4 | breq2 4890 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑧𝑆𝑦 ↔ 𝑧𝑆𝐵)) | |
5 | 4 | anbi2d 622 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵))) |
6 | 5 | rabbidv 3386 | . 2 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
7 | ixx.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
8 | xrex 12134 | . . 3 ⊢ ℝ* ∈ V | |
9 | 8 | rabex 5049 | . 2 ⊢ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∈ V |
10 | 3, 6, 7, 9 | ovmpt2 7073 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 class class class wbr 4886 (class class class)co 6922 ↦ cmpt2 6924 ℝ*cxr 10410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-xr 10415 |
This theorem is referenced by: elixx1 12496 ixxin 12504 iooval 12511 iocval 12524 icoval 12525 iccval 12526 |
Copyright terms: Public domain | W3C validator |