![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxval | Structured version Visualization version GIF version |
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5144 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝑧)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦))) |
3 | 2 | rabbidv 3434 | . 2 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
4 | breq2 5145 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑧𝑆𝑦 ↔ 𝑧𝑆𝐵)) | |
5 | 4 | anbi2d 628 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵))) |
6 | 5 | rabbidv 3434 | . 2 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
7 | ixx.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
8 | xrex 12972 | . . 3 ⊢ ℝ* ∈ V | |
9 | 8 | rabex 5325 | . 2 ⊢ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∈ V |
10 | 3, 6, 7, 9 | ovmpo 7563 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 class class class wbr 5141 (class class class)co 7404 ∈ cmpo 7406 ℝ*cxr 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-xr 11253 |
This theorem is referenced by: elixx1 13336 ixxin 13344 iooval 13351 iocval 13364 icoval 13365 iccval 13366 |
Copyright terms: Public domain | W3C validator |