| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxval | Structured version Visualization version GIF version | ||
| Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝑧)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦))) |
| 3 | 2 | rabbidv 3413 | . 2 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| 4 | breq2 5111 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑧𝑆𝑦 ↔ 𝑧𝑆𝐵)) | |
| 5 | 4 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵))) |
| 6 | 5 | rabbidv 3413 | . 2 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| 7 | ixx.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 8 | xrex 12946 | . . 3 ⊢ ℝ* ∈ V | |
| 9 | 8 | rabex 5294 | . 2 ⊢ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∈ V |
| 10 | 3, 6, 7, 9 | ovmpo 7549 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 (class class class)co 7387 ∈ cmpo 7389 ℝ*cxr 11207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-xr 11212 |
| This theorem is referenced by: elixx1 13315 ixxin 13323 iooval 13330 iocval 13343 icoval 13344 iccval 13345 |
| Copyright terms: Public domain | W3C validator |