MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Visualization version   GIF version

Theorem psercnlem2 24927
Description: Lemma for psercn 24929. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercnlem2.i ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Assertion
Ref Expression
psercnlem2 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem2
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5947 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 14687 . . . . . . . . 9 abs:ℂ⟶ℝ
43fdmi 6521 . . . . . . . 8 dom abs = ℂ
52, 4sseqtri 4007 . . . . . . 7 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 4005 . . . . . 6 𝑆 ⊆ ℂ
76a1i 11 . . . . 5 (𝜑𝑆 ⊆ ℂ)
87sselda 3971 . . . 4 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14786 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
108absge0d 14794 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
11 psercnlem2.i . . . . . 6 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1211simp2d 1137 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
13 0re 10632 . . . . . 6 0 ∈ ℝ
1411simp1d 1136 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1514rpxrd 12422 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
16 elico2 12790 . . . . . 6 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
1713, 15, 16sylancr 587 . . . . 5 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
189, 10, 12, 17mpbir3and 1336 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑀))
19 ffn 6511 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
20 elpreima 6824 . . . . 5 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))))
213, 19, 20mp2b 10 . . . 4 (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))
228, 18, 21sylanbrc 583 . . 3 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑀)))
23 eqid 2826 . . . . 5 (abs ∘ − ) = (abs ∘ − )
2423cnbl0 23297 . . . 4 (𝑀 ∈ ℝ* → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2515, 24syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2622, 25eleqtrd 2920 . 2 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
27 icossicc 12814 . . . 4 (0[,)𝑀) ⊆ (0[,]𝑀)
28 imass2 5963 . . . 4 ((0[,)𝑀) ⊆ (0[,]𝑀) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
2927, 28mp1i 13 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
3025, 29eqsstrrd 4010 . 2 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
31 iccssxr 12809 . . . . . 6 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 24920 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 481 . . . . . 6 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3969 . . . . 5 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
3811simp3d 1138 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
39 df-ico 12734 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
40 df-icc 12735 . . . . . 6 [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤𝑣)})
41 xrlelttr 12539 . . . . . 6 ((𝑧 ∈ ℝ*𝑀 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑧𝑀𝑀 < 𝑅) → 𝑧 < 𝑅))
4239, 40, 41ixxss2 12747 . . . . 5 ((𝑅 ∈ ℝ*𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅))
4337, 38, 42syl2anc 584 . . . 4 ((𝜑𝑎𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅))
44 imass2 5963 . . . 4 ((0[,]𝑀) ⊆ (0[,)𝑅) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4543, 44syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4645, 1sseqtrrdi 4022 . 2 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
4726, 30, 463jca 1122 1 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  {crab 3147  wss 3940   class class class wbr 5063  cmpt 5143  ccnv 5553  dom cdm 5554  cima 5557  ccom 5558   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  supcsup 8893  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859  0cn0 11886  +crp 12379  [,)cico 12730  [,]cicc 12731  seqcseq 13359  cexp 13419  abscabs 14583  cli 14831  Σcsu 15032  ballcbl 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-xadd 12498  df-ico 12734  df-icc 12735  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456
This theorem is referenced by:  psercn  24929  pserdvlem2  24931  pserdv  24932
  Copyright terms: Public domain W3C validator