MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Visualization version   GIF version

Theorem psercnlem2 26316
Description: Lemma for psercn 26318. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercnlem2.i ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Assertion
Ref Expression
psercnlem2 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem2
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 6074 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 15290 . . . . . . . . 9 abs:ℂ⟶ℝ
43fdmi 6723 . . . . . . . 8 dom abs = ℂ
52, 4sseqtri 4013 . . . . . . 7 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 4011 . . . . . 6 𝑆 ⊆ ℂ
76a1i 11 . . . . 5 (𝜑𝑆 ⊆ ℂ)
87sselda 3977 . . . 4 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 15389 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
108absge0d 15397 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
11 psercnlem2.i . . . . . 6 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1211simp2d 1140 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
13 0re 11220 . . . . . 6 0 ∈ ℝ
1411simp1d 1139 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1514rpxrd 13023 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
16 elico2 13394 . . . . . 6 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
1713, 15, 16sylancr 586 . . . . 5 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
189, 10, 12, 17mpbir3and 1339 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑀))
19 ffn 6711 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
20 elpreima 7053 . . . . 5 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))))
213, 19, 20mp2b 10 . . . 4 (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))
228, 18, 21sylanbrc 582 . . 3 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑀)))
23 eqid 2726 . . . . 5 (abs ∘ − ) = (abs ∘ − )
2423cnbl0 24645 . . . 4 (𝑀 ∈ ℝ* → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2515, 24syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2622, 25eleqtrd 2829 . 2 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
27 icossicc 13419 . . . 4 (0[,)𝑀) ⊆ (0[,]𝑀)
28 imass2 6095 . . . 4 ((0[,)𝑀) ⊆ (0[,]𝑀) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
2927, 28mp1i 13 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
3025, 29eqsstrrd 4016 . 2 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
31 iccssxr 13413 . . . . . 6 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 26308 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 480 . . . . . 6 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sselid 3975 . . . . 5 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
3811simp3d 1141 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
39 df-ico 13336 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
40 df-icc 13337 . . . . . 6 [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤𝑣)})
41 xrlelttr 13141 . . . . . 6 ((𝑧 ∈ ℝ*𝑀 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑧𝑀𝑀 < 𝑅) → 𝑧 < 𝑅))
4239, 40, 41ixxss2 13349 . . . . 5 ((𝑅 ∈ ℝ*𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅))
4337, 38, 42syl2anc 583 . . . 4 ((𝜑𝑎𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅))
44 imass2 6095 . . . 4 ((0[,]𝑀) ⊆ (0[,)𝑅) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4543, 44syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4645, 1sseqtrrdi 4028 . 2 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
4726, 30, 463jca 1125 1 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  {crab 3426  wss 3943   class class class wbr 5141  cmpt 5224  ccnv 5668  dom cdm 5669  cima 5672  ccom 5673   Fn wfn 6532  wf 6533  cfv 6537  (class class class)co 7405  supcsup 9437  cc 11110  cr 11111  0cc0 11112   + caddc 11115   · cmul 11117  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  cmin 11448  0cn0 12476  +crp 12980  [,)cico 13332  [,]cicc 13333  seqcseq 13972  cexp 14032  abscabs 15187  cli 15434  Σcsu 15638  ballcbl 21227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-xadd 13099  df-ico 13336  df-icc 13337  df-fz 13491  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235
This theorem is referenced by:  psercn  26318  pserdvlem2  26320  pserdv  26321
  Copyright terms: Public domain W3C validator