![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psercnlem2 | Structured version Visualization version GIF version |
Description: Lemma for psercn 26318. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercnlem2.i | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
Ref | Expression |
---|---|
psercnlem2 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psercn.s | . . . . . . 7 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
2 | cnvimass 6074 | . . . . . . . 8 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
3 | absf 15290 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
4 | 3 | fdmi 6723 | . . . . . . . 8 ⊢ dom abs = ℂ |
5 | 2, 4 | sseqtri 4013 | . . . . . . 7 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
6 | 1, 5 | eqsstri 4011 | . . . . . 6 ⊢ 𝑆 ⊆ ℂ |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 7 | sselda 3977 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
9 | 8 | abscld 15389 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
10 | 8 | absge0d 15397 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
11 | psercnlem2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | |
12 | 11 | simp2d 1140 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
13 | 0re 11220 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 11 | simp1d 1139 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
15 | 14 | rpxrd 13023 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
16 | elico2 13394 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) | |
17 | 13, 15, 16 | sylancr 586 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) |
18 | 9, 10, 12, 17 | mpbir3and 1339 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑀)) |
19 | ffn 6711 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
20 | elpreima 7053 | . . . . 5 ⊢ (abs Fn ℂ → (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))) | |
21 | 3, 19, 20 | mp2b 10 | . . . 4 ⊢ (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))) |
22 | 8, 18, 21 | sylanbrc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑀))) |
23 | eqid 2726 | . . . . 5 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
24 | 23 | cnbl0 24645 | . . . 4 ⊢ (𝑀 ∈ ℝ* → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
25 | 15, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
26 | 22, 25 | eleqtrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀)) |
27 | icossicc 13419 | . . . 4 ⊢ (0[,)𝑀) ⊆ (0[,]𝑀) | |
28 | imass2 6095 | . . . 4 ⊢ ((0[,)𝑀) ⊆ (0[,]𝑀) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) |
30 | 25, 29 | eqsstrrd 4016 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
31 | iccssxr 13413 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
32 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
33 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
34 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
35 | 32, 33, 34 | radcnvcl 26308 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
37 | 31, 36 | sselid 3975 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
38 | 11 | simp3d 1141 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
39 | df-ico 13336 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
40 | df-icc 13337 | . . . . . 6 ⊢ [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣)}) | |
41 | xrlelttr 13141 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅) → 𝑧 < 𝑅)) | |
42 | 39, 40, 41 | ixxss2 13349 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
43 | 37, 38, 42 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
44 | imass2 6095 | . . . 4 ⊢ ((0[,]𝑀) ⊆ (0[,)𝑅) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) | |
45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) |
46 | 45, 1 | sseqtrrdi 4028 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
47 | 26, 30, 46 | 3jca 1125 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3426 ⊆ wss 3943 class class class wbr 5141 ↦ cmpt 5224 ◡ccnv 5668 dom cdm 5669 “ cima 5672 ∘ ccom 5673 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 supcsup 9437 ℂcc 11110 ℝcr 11111 0cc0 11112 + caddc 11115 · cmul 11117 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 − cmin 11448 ℕ0cn0 12476 ℝ+crp 12980 [,)cico 13332 [,]cicc 13333 seqcseq 13972 ↑cexp 14032 abscabs 15187 ⇝ cli 15434 Σcsu 15638 ballcbl 21227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-xadd 13099 df-ico 13336 df-icc 13337 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 |
This theorem is referenced by: psercn 26318 pserdvlem2 26320 pserdv 26321 |
Copyright terms: Public domain | W3C validator |