| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercnlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for psercn 26470. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercnlem2.i | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| Ref | Expression |
|---|---|
| psercnlem2 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psercn.s | . . . . . . 7 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 2 | cnvimass 6100 | . . . . . . . 8 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 3 | absf 15376 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 4 | 3 | fdmi 6747 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 5 | 2, 4 | sseqtri 4032 | . . . . . . 7 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 6 | 1, 5 | eqsstri 4030 | . . . . . 6 ⊢ 𝑆 ⊆ ℂ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 7 | sselda 3983 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 9 | 8 | abscld 15475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 10 | 8 | absge0d 15483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
| 11 | psercnlem2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | |
| 12 | 11 | simp2d 1144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 13 | 0re 11263 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 14 | 11 | simp1d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
| 15 | 14 | rpxrd 13078 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
| 16 | elico2 13451 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) | |
| 17 | 13, 15, 16 | sylancr 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) |
| 18 | 9, 10, 12, 17 | mpbir3and 1343 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑀)) |
| 19 | ffn 6736 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 20 | elpreima 7078 | . . . . 5 ⊢ (abs Fn ℂ → (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))) | |
| 21 | 3, 19, 20 | mp2b 10 | . . . 4 ⊢ (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))) |
| 22 | 8, 18, 21 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑀))) |
| 23 | eqid 2737 | . . . . 5 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 24 | 23 | cnbl0 24794 | . . . 4 ⊢ (𝑀 ∈ ℝ* → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 25 | 15, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 26 | 22, 25 | eleqtrd 2843 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀)) |
| 27 | icossicc 13476 | . . . 4 ⊢ (0[,)𝑀) ⊆ (0[,]𝑀) | |
| 28 | imass2 6120 | . . . 4 ⊢ ((0[,)𝑀) ⊆ (0[,]𝑀) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) | |
| 29 | 27, 28 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) |
| 30 | 25, 29 | eqsstrrd 4019 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
| 31 | iccssxr 13470 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 32 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 33 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 34 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 35 | 32, 33, 34 | radcnvcl 26460 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
| 37 | 31, 36 | sselid 3981 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
| 38 | 11 | simp3d 1145 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 39 | df-ico 13393 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
| 40 | df-icc 13394 | . . . . . 6 ⊢ [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣)}) | |
| 41 | xrlelttr 13198 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅) → 𝑧 < 𝑅)) | |
| 42 | 39, 40, 41 | ixxss2 13406 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 43 | 37, 38, 42 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 44 | imass2 6120 | . . . 4 ⊢ ((0[,]𝑀) ⊆ (0[,)𝑅) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) | |
| 45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) |
| 46 | 45, 1 | sseqtrrdi 4025 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
| 47 | 26, 30, 46 | 3jca 1129 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ◡ccnv 5684 dom cdm 5685 “ cima 5688 ∘ ccom 5689 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supcsup 9480 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 − cmin 11492 ℕ0cn0 12526 ℝ+crp 13034 [,)cico 13389 [,]cicc 13390 seqcseq 14042 ↑cexp 14102 abscabs 15273 ⇝ cli 15520 Σcsu 15722 ballcbl 21351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-xadd 13155 df-ico 13393 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 |
| This theorem is referenced by: psercn 26470 pserdvlem2 26472 pserdv 26473 |
| Copyright terms: Public domain | W3C validator |