MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Visualization version   GIF version

Theorem psercnlem2 26350
Description: Lemma for psercn 26352. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercnlem2.i ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Assertion
Ref Expression
psercnlem2 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem2
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 6037 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 15263 . . . . . . . . 9 abs:ℂ⟶ℝ
43fdmi 6667 . . . . . . . 8 dom abs = ℂ
52, 4sseqtri 3986 . . . . . . 7 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 3984 . . . . . 6 𝑆 ⊆ ℂ
76a1i 11 . . . . 5 (𝜑𝑆 ⊆ ℂ)
87sselda 3937 . . . 4 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 15364 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
108absge0d 15372 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
11 psercnlem2.i . . . . . 6 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1211simp2d 1143 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
13 0re 11136 . . . . . 6 0 ∈ ℝ
1411simp1d 1142 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1514rpxrd 12956 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
16 elico2 13331 . . . . . 6 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
1713, 15, 16sylancr 587 . . . . 5 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
189, 10, 12, 17mpbir3and 1343 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑀))
19 ffn 6656 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
20 elpreima 6996 . . . . 5 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))))
213, 19, 20mp2b 10 . . . 4 (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))
228, 18, 21sylanbrc 583 . . 3 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑀)))
23 eqid 2729 . . . . 5 (abs ∘ − ) = (abs ∘ − )
2423cnbl0 24677 . . . 4 (𝑀 ∈ ℝ* → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2515, 24syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2622, 25eleqtrd 2830 . 2 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
27 icossicc 13357 . . . 4 (0[,)𝑀) ⊆ (0[,]𝑀)
28 imass2 6057 . . . 4 ((0[,)𝑀) ⊆ (0[,]𝑀) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
2927, 28mp1i 13 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
3025, 29eqsstrrd 3973 . 2 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
31 iccssxr 13351 . . . . . 6 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 26342 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 480 . . . . . 6 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sselid 3935 . . . . 5 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
3811simp3d 1144 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
39 df-ico 13272 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
40 df-icc 13273 . . . . . 6 [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤𝑣)})
41 xrlelttr 13076 . . . . . 6 ((𝑧 ∈ ℝ*𝑀 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑧𝑀𝑀 < 𝑅) → 𝑧 < 𝑅))
4239, 40, 41ixxss2 13285 . . . . 5 ((𝑅 ∈ ℝ*𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅))
4337, 38, 42syl2anc 584 . . . 4 ((𝜑𝑎𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅))
44 imass2 6057 . . . 4 ((0[,]𝑀) ⊆ (0[,)𝑅) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4543, 44syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4645, 1sseqtrrdi 3979 . 2 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
4726, 30, 463jca 1128 1 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  wss 3905   class class class wbr 5095  cmpt 5176  ccnv 5622  dom cdm 5623  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cc 11026  cr 11027  0cc0 11028   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365  0cn0 12402  +crp 12911  [,)cico 13268  [,]cicc 13269  seqcseq 13926  cexp 13986  abscabs 15159  cli 15409  Σcsu 15611  ballcbl 21266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-ico 13272  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274
This theorem is referenced by:  psercn  26352  pserdvlem2  26354  pserdv  26355
  Copyright terms: Public domain W3C validator