| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercnlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for psercn 26336. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercnlem2.i | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| Ref | Expression |
|---|---|
| psercnlem2 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psercn.s | . . . . . . 7 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 2 | cnvimass 6053 | . . . . . . . 8 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 3 | absf 15304 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 4 | 3 | fdmi 6699 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 5 | 2, 4 | sseqtri 3995 | . . . . . . 7 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 6 | 1, 5 | eqsstri 3993 | . . . . . 6 ⊢ 𝑆 ⊆ ℂ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 7 | sselda 3946 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 9 | 8 | abscld 15405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 10 | 8 | absge0d 15413 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
| 11 | psercnlem2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | |
| 12 | 11 | simp2d 1143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 13 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 14 | 11 | simp1d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
| 15 | 14 | rpxrd 12996 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
| 16 | elico2 13371 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) | |
| 17 | 13, 15, 16 | sylancr 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) |
| 18 | 9, 10, 12, 17 | mpbir3and 1343 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑀)) |
| 19 | ffn 6688 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 20 | elpreima 7030 | . . . . 5 ⊢ (abs Fn ℂ → (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))) | |
| 21 | 3, 19, 20 | mp2b 10 | . . . 4 ⊢ (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))) |
| 22 | 8, 18, 21 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑀))) |
| 23 | eqid 2729 | . . . . 5 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 24 | 23 | cnbl0 24661 | . . . 4 ⊢ (𝑀 ∈ ℝ* → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 25 | 15, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 26 | 22, 25 | eleqtrd 2830 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀)) |
| 27 | icossicc 13397 | . . . 4 ⊢ (0[,)𝑀) ⊆ (0[,]𝑀) | |
| 28 | imass2 6073 | . . . 4 ⊢ ((0[,)𝑀) ⊆ (0[,]𝑀) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) | |
| 29 | 27, 28 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) |
| 30 | 25, 29 | eqsstrrd 3982 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
| 31 | iccssxr 13391 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 32 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 33 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 34 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 35 | 32, 33, 34 | radcnvcl 26326 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
| 37 | 31, 36 | sselid 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
| 38 | 11 | simp3d 1144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 39 | df-ico 13312 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
| 40 | df-icc 13313 | . . . . . 6 ⊢ [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣)}) | |
| 41 | xrlelttr 13116 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅) → 𝑧 < 𝑅)) | |
| 42 | 39, 40, 41 | ixxss2 13325 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 43 | 37, 38, 42 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 44 | imass2 6073 | . . . 4 ⊢ ((0[,]𝑀) ⊆ (0[,)𝑅) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) | |
| 45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) |
| 46 | 45, 1 | sseqtrrdi 3988 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
| 47 | 26, 30, 46 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 + caddc 11071 · cmul 11073 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℕ0cn0 12442 ℝ+crp 12951 [,)cico 13308 [,]cicc 13309 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 Σcsu 15652 ballcbl 21251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 |
| This theorem is referenced by: psercn 26336 pserdvlem2 26338 pserdv 26339 |
| Copyright terms: Public domain | W3C validator |