Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psercnlem2 | Structured version Visualization version GIF version |
Description: Lemma for psercn 25585. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercnlem2.i | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
Ref | Expression |
---|---|
psercnlem2 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psercn.s | . . . . . . 7 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
2 | cnvimass 5989 | . . . . . . . 8 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
3 | absf 15049 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
4 | 3 | fdmi 6612 | . . . . . . . 8 ⊢ dom abs = ℂ |
5 | 2, 4 | sseqtri 3957 | . . . . . . 7 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
6 | 1, 5 | eqsstri 3955 | . . . . . 6 ⊢ 𝑆 ⊆ ℂ |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 7 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
9 | 8 | abscld 15148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
10 | 8 | absge0d 15156 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
11 | psercnlem2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | |
12 | 11 | simp2d 1142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
13 | 0re 10977 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 11 | simp1d 1141 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
15 | 14 | rpxrd 12773 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
16 | elico2 13143 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) | |
17 | 13, 15, 16 | sylancr 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) |
18 | 9, 10, 12, 17 | mpbir3and 1341 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑀)) |
19 | ffn 6600 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
20 | elpreima 6935 | . . . . 5 ⊢ (abs Fn ℂ → (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))) | |
21 | 3, 19, 20 | mp2b 10 | . . . 4 ⊢ (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))) |
22 | 8, 18, 21 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑀))) |
23 | eqid 2738 | . . . . 5 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
24 | 23 | cnbl0 23937 | . . . 4 ⊢ (𝑀 ∈ ℝ* → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
25 | 15, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
26 | 22, 25 | eleqtrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀)) |
27 | icossicc 13168 | . . . 4 ⊢ (0[,)𝑀) ⊆ (0[,]𝑀) | |
28 | imass2 6010 | . . . 4 ⊢ ((0[,)𝑀) ⊆ (0[,]𝑀) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) |
30 | 25, 29 | eqsstrrd 3960 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
31 | iccssxr 13162 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
32 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
33 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
34 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
35 | 32, 33, 34 | radcnvcl 25576 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
36 | 35 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
37 | 31, 36 | sselid 3919 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
38 | 11 | simp3d 1143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
39 | df-ico 13085 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
40 | df-icc 13086 | . . . . . 6 ⊢ [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣)}) | |
41 | xrlelttr 12890 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅) → 𝑧 < 𝑅)) | |
42 | 39, 40, 41 | ixxss2 13098 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
43 | 37, 38, 42 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
44 | imass2 6010 | . . . 4 ⊢ ((0[,]𝑀) ⊆ (0[,)𝑅) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) | |
45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) |
46 | 45, 1 | sseqtrrdi 3972 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
47 | 26, 30, 46 | 3jca 1127 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 dom cdm 5589 “ cima 5592 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 ℂcc 10869 ℝcr 10870 0cc0 10871 + caddc 10874 · cmul 10876 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 ℕ0cn0 12233 ℝ+crp 12730 [,)cico 13081 [,]cicc 13082 seqcseq 13721 ↑cexp 13782 abscabs 14945 ⇝ cli 15193 Σcsu 15397 ballcbl 20584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ico 13085 df-icc 13086 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 |
This theorem is referenced by: psercn 25585 pserdvlem2 25587 pserdv 25588 |
Copyright terms: Public domain | W3C validator |