| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercnlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for psercn 26364. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| psercnlem2.i | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| Ref | Expression |
|---|---|
| psercnlem2 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psercn.s | . . . . . . 7 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
| 2 | cnvimass 6035 | . . . . . . . 8 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
| 3 | absf 15247 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 4 | 3 | fdmi 6667 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 5 | 2, 4 | sseqtri 3979 | . . . . . . 7 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 6 | 1, 5 | eqsstri 3977 | . . . . . 6 ⊢ 𝑆 ⊆ ℂ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 7 | sselda 3930 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 9 | 8 | abscld 15348 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 10 | 8 | absge0d 15356 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
| 11 | psercnlem2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | |
| 12 | 11 | simp2d 1143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 13 | 0re 11121 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 14 | 11 | simp1d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
| 15 | 14 | rpxrd 12937 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
| 16 | elico2 13312 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) | |
| 17 | 13, 15, 16 | sylancr 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀))) |
| 18 | 9, 10, 12, 17 | mpbir3and 1343 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ (0[,)𝑀)) |
| 19 | ffn 6656 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 20 | elpreima 6997 | . . . . 5 ⊢ (abs Fn ℂ → (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))) | |
| 21 | 3, 19, 20 | mp2b 10 | . . . 4 ⊢ (𝑎 ∈ (◡abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))) |
| 22 | 8, 18, 21 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (◡abs “ (0[,)𝑀))) |
| 23 | eqid 2733 | . . . . 5 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 24 | 23 | cnbl0 24689 | . . . 4 ⊢ (𝑀 ∈ ℝ* → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 25 | 15, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀)) |
| 26 | 22, 25 | eleqtrd 2835 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀)) |
| 27 | icossicc 13338 | . . . 4 ⊢ (0[,)𝑀) ⊆ (0[,]𝑀) | |
| 28 | imass2 6055 | . . . 4 ⊢ ((0[,)𝑀) ⊆ (0[,]𝑀) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) | |
| 29 | 27, 28 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,)𝑀)) ⊆ (◡abs “ (0[,]𝑀))) |
| 30 | 25, 29 | eqsstrrd 3966 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀))) |
| 31 | iccssxr 13332 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 32 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 33 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 34 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 35 | 32, 33, 34 | radcnvcl 26354 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ (0[,]+∞)) |
| 37 | 31, 36 | sselid 3928 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
| 38 | 11 | simp3d 1144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 39 | df-ico 13253 | . . . . . 6 ⊢ [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣)}) | |
| 40 | df-icc 13254 | . . . . . 6 ⊢ [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 ≤ 𝑤 ∧ 𝑤 ≤ 𝑣)}) | |
| 41 | xrlelttr 13057 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((𝑧 ≤ 𝑀 ∧ 𝑀 < 𝑅) → 𝑧 < 𝑅)) | |
| 42 | 39, 40, 41 | ixxss2 13266 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 43 | 37, 38, 42 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅)) |
| 44 | imass2 6055 | . . . 4 ⊢ ((0[,]𝑀) ⊆ (0[,)𝑅) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) | |
| 45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ (◡abs “ (0[,)𝑅))) |
| 46 | 45, 1 | sseqtrrdi 3972 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,]𝑀)) ⊆ 𝑆) |
| 47 | 26, 30, 46 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 dom cdm 5619 “ cima 5622 ∘ ccom 5623 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 supcsup 9331 ℂcc 11011 ℝcr 11012 0cc0 11013 + caddc 11016 · cmul 11018 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 − cmin 11351 ℕ0cn0 12388 ℝ+crp 12892 [,)cico 13249 [,]cicc 13250 seqcseq 13910 ↑cexp 13970 abscabs 15143 ⇝ cli 15393 Σcsu 15595 ballcbl 21280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-xadd 13014 df-ico 13253 df-icc 13254 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 |
| This theorem is referenced by: psercn 26364 pserdvlem2 26366 pserdv 26367 |
| Copyright terms: Public domain | W3C validator |