Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem2 Structured version   Visualization version   GIF version

Theorem psercnlem2 25118
 Description: Lemma for psercn 25120. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercnlem2.i ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Assertion
Ref Expression
psercnlem2 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem2
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psercn.s . . . . . . 7 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5921 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 14745 . . . . . . . . 9 abs:ℂ⟶ℝ
43fdmi 6509 . . . . . . . 8 dom abs = ℂ
52, 4sseqtri 3928 . . . . . . 7 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 3926 . . . . . 6 𝑆 ⊆ ℂ
76a1i 11 . . . . 5 (𝜑𝑆 ⊆ ℂ)
87sselda 3892 . . . 4 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14844 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
108absge0d 14852 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
11 psercnlem2.i . . . . . 6 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1211simp2d 1140 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
13 0re 10681 . . . . . 6 0 ∈ ℝ
1411simp1d 1139 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1514rpxrd 12473 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
16 elico2 12843 . . . . . 6 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
1713, 15, 16sylancr 590 . . . . 5 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑀) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑀)))
189, 10, 12, 17mpbir3and 1339 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑀))
19 ffn 6498 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
20 elpreima 6819 . . . . 5 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀))))
213, 19, 20mp2b 10 . . . 4 (𝑎 ∈ (abs “ (0[,)𝑀)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑀)))
228, 18, 21sylanbrc 586 . . 3 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑀)))
23 eqid 2758 . . . . 5 (abs ∘ − ) = (abs ∘ − )
2423cnbl0 23475 . . . 4 (𝑀 ∈ ℝ* → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2515, 24syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
2622, 25eleqtrd 2854 . 2 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
27 icossicc 12868 . . . 4 (0[,)𝑀) ⊆ (0[,]𝑀)
28 imass2 5937 . . . 4 ((0[,)𝑀) ⊆ (0[,]𝑀) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
2927, 28mp1i 13 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,)𝑀)) ⊆ (abs “ (0[,]𝑀)))
3025, 29eqsstrrd 3931 . 2 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
31 iccssxr 12862 . . . . . 6 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 25111 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 484 . . . . . 6 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3890 . . . . 5 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
3811simp3d 1141 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
39 df-ico 12785 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
40 df-icc 12786 . . . . . 6 [,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤𝑣)})
41 xrlelttr 12590 . . . . . 6 ((𝑧 ∈ ℝ*𝑀 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑧𝑀𝑀 < 𝑅) → 𝑧 < 𝑅))
4239, 40, 41ixxss2 12798 . . . . 5 ((𝑅 ∈ ℝ*𝑀 < 𝑅) → (0[,]𝑀) ⊆ (0[,)𝑅))
4337, 38, 42syl2anc 587 . . . 4 ((𝜑𝑎𝑆) → (0[,]𝑀) ⊆ (0[,)𝑅))
44 imass2 5937 . . . 4 ((0[,]𝑀) ⊆ (0[,)𝑅) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4543, 44syl 17 . . 3 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ (abs “ (0[,)𝑅)))
4645, 1sseqtrrdi 3943 . 2 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
4726, 30, 463jca 1125 1 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3074   ⊆ wss 3858   class class class wbr 5032   ↦ cmpt 5112  ◡ccnv 5523  dom cdm 5524   “ cima 5527   ∘ ccom 5528   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  supcsup 8937  ℂcc 10573  ℝcr 10574  0cc0 10575   + caddc 10578   · cmul 10580  +∞cpnf 10710  ℝ*cxr 10712   < clt 10713   ≤ cle 10714   − cmin 10908  ℕ0cn0 11934  ℝ+crp 12430  [,)cico 12781  [,]cicc 12782  seqcseq 13418  ↑cexp 13479  abscabs 14641   ⇝ cli 14889  Σcsu 15090  ballcbl 20153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-xadd 12549  df-ico 12785  df-icc 12786  df-fz 12940  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161 This theorem is referenced by:  psercn  25120  pserdvlem2  25122  pserdv  25123
 Copyright terms: Public domain W3C validator