MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl Structured version   Visualization version   GIF version

Theorem ioombl 24929
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
ioombl (𝐴(,)𝐵) ∈ dom vol

Proof of Theorem ioombl
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snunioo 13395 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
213expa 1118 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
32adantrr 715 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
4 lbico1 13318 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
543expa 1118 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
65adantrr 715 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ (𝐴[,)𝐵))
76snssd 4769 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ (𝐴[,)𝐵))
8 iccid 13309 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
98ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,]𝐴) = {𝐴})
109ineq1d 4171 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ({𝐴} ∩ (𝐴(,)𝐵)))
11 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ*)
12 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐵 ∈ ℝ*)
13 df-icc 13271 . . . . . . . . . . 11 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
14 df-ioo 13268 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
15 xrltnle 11222 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
1613, 14, 15ixxdisj 13279 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1711, 11, 12, 16syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1810, 17eqtr3d 2778 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∩ (𝐴(,)𝐵)) = ∅)
19 uneqdifeq 4450 . . . . . . . 8 (({𝐴} ⊆ (𝐴[,)𝐵) ∧ ({𝐴} ∩ (𝐴(,)𝐵)) = ∅) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
207, 18, 19syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
213, 20mpbid 231 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
22 mnfxr 11212 . . . . . . . . . 10 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ ∈ ℝ*)
24 simprr 771 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ < 𝐴)
25 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 < 𝐵)
26 xrre2 13089 . . . . . . . . 9 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
2723, 11, 12, 24, 25, 26syl32anc 1378 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ)
28 icombl 24928 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
2927, 12, 28syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,)𝐵) ∈ dom vol)
3027snssd 4769 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ ℝ)
31 ovolsn 24859 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0)
3227, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (vol*‘{𝐴}) = 0)
33 nulmbl 24899 . . . . . . . 8 (({𝐴} ⊆ ℝ ∧ (vol*‘{𝐴}) = 0) → {𝐴} ∈ dom vol)
3430, 32, 33syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ∈ dom vol)
35 difmbl 24907 . . . . . . 7 (((𝐴[,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3629, 34, 35syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3721, 36eqeltrrd 2839 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴(,)𝐵) ∈ dom vol)
3837expr 457 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
39 uncom 4113 . . . . . . . . 9 ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∪ (𝐵[,)+∞))
4022a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ∈ ℝ*)
41 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
42 pnfxr 11209 . . . . . . . . . . 11 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
44 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
45 mnfle 13055 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
4645ad2antrr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ≤ 𝐴)
47 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4840, 44, 41, 46, 47xrlelttrd 13079 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ < 𝐵)
49 pnfge 13051 . . . . . . . . . . 11 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
5041, 49syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
51 df-ico 13270 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
52 xrlenlt 11220 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
53 xrltletr 13076 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐵𝐵 ≤ +∞) → 𝑤 < +∞))
54 xrltletr 13076 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝑤) → -∞ < 𝑤))
5514, 51, 52, 14, 53, 54ixxun 13280 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 ≤ +∞)) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5640, 41, 43, 48, 50, 55syl32anc 1378 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5739, 56eqtrid 2788 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = (-∞(,)+∞))
58 ioomax 13339 . . . . . . . 8 (-∞(,)+∞) = ℝ
5957, 58eqtrdi 2792 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ)
60 ssun1 4132 . . . . . . . . 9 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (-∞(,)𝐵))
6160, 59sseqtrid 3996 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ ℝ)
62 incom 4161 . . . . . . . . 9 ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∩ (𝐵[,)+∞))
6314, 51, 52ixxdisj 13279 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6440, 41, 43, 63syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6562, 64eqtrid 2788 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅)
66 uneqdifeq 4450 . . . . . . . 8 (((𝐵[,)+∞) ⊆ ℝ ∧ ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6761, 65, 66syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6859, 67mpbid 231 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵))
69 rembl 24904 . . . . . . 7 ℝ ∈ dom vol
70 xrleloe 13063 . . . . . . . . . . 11 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7141, 42, 70sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7250, 71mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
73 xrre2 13089 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
7473expr 457 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7542, 74mp3anl3 1457 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7675orim1d 964 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
7772, 76mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
78 icombl1 24927 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
79 oveq1 7364 . . . . . . . . . . 11 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
80 pnfge 13051 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → +∞ ≤ +∞)
8142, 80ax-mp 5 . . . . . . . . . . . 12 +∞ ≤ +∞
82 ico0 13310 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
8342, 42, 82mp2an 690 . . . . . . . . . . . 12 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
8481, 83mpbir 230 . . . . . . . . . . 11 (+∞[,)+∞) = ∅
8579, 84eqtrdi 2792 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
86 0mbl 24903 . . . . . . . . . 10 ∅ ∈ dom vol
8785, 86eqeltrdi 2846 . . . . . . . . 9 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
8878, 87jaoi 855 . . . . . . . 8 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
8977, 88syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
90 difmbl 24907 . . . . . . 7 ((ℝ ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9169, 89, 90sylancr 587 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9268, 91eqeltrrd 2839 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞(,)𝐵) ∈ dom vol)
93 oveq1 7364 . . . . . 6 (-∞ = 𝐴 → (-∞(,)𝐵) = (𝐴(,)𝐵))
9493eleq1d 2822 . . . . 5 (-∞ = 𝐴 → ((-∞(,)𝐵) ∈ dom vol ↔ (𝐴(,)𝐵) ∈ dom vol))
9592, 94syl5ibcom 244 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ = 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
96 xrleloe 13063 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9722, 44, 96sylancr 587 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9846, 97mpbid 231 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 ∨ -∞ = 𝐴))
9938, 95, 98mpjaod 858 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
100 ioo0 13289 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
101 xrlenlt 11220 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
102101ancoms 459 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
103100, 102bitrd 278 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
104103biimpar 478 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) = ∅)
105104, 86eqeltrdi 2846 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
10699, 105pm2.61dan 811 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
107 ndmioo 13291 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
108107, 86eqeltrdi 2846 . 2 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
109106, 108pm2.61i 182 1 (𝐴(,)𝐵) ∈ dom vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  dom cdm 5633  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  vol*covol 24826  volcvol 24827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829
This theorem is referenced by:  iccmbl  24930  ovolioo  24932  volioo  24933  ioovolcl  24934  uniioovol  24943  uniioombllem4  24950  uniioombllem5  24951  opnmblALT  24967  mbfid  24999  ditgcl  25222  ditgswap  25223  ditgsplitlem  25224  ftc1lem1  25399  ftc1lem2  25400  ftc1a  25401  ftc1lem4  25403  ftc2  25408  ftc2ditglem  25409  itgsubstlem  25412  itgpowd  25414  ftc2re  33211  fdvposlt  33212  fdvposle  33214  itgexpif  33219  circlemeth  33253  itg2gt0cn  36133  ftc1cnnclem  36149  ftc1anclem7  36157  ftc1anclem8  36158  ftc1anc  36159  ftc2nc  36160  areacirc  36171  lcmineqlem10  40495  lcmineqlem12  40497  iocmbl  41533  cnioobibld  41534  lhe4.4ex1a  42599  itgsin0pilem1  44181  iblioosinexp  44184  itgsinexplem1  44185  itgsinexp  44186  itgcoscmulx  44200  volioc  44203  itgsincmulx  44205  iblcncfioo  44209  itgiccshift  44211  itgperiod  44212  itgsbtaddcnst  44213  volico  44214  volioof  44218  wallispilem2  44297  dirkeritg  44333  fourierdlem16  44354  fourierdlem21  44359  fourierdlem22  44360  fourierdlem39  44377  fourierdlem73  44410  fourierdlem83  44420  fourierdlem103  44440  fourierdlem104  44441  fourierdlem111  44448  fourierdlem112  44449  sqwvfoura  44459  sqwvfourb  44460  etransclem18  44483  etransclem23  44488  ovolval4lem1  44880  ovolval5lem1  44883
  Copyright terms: Public domain W3C validator