MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl Structured version   Visualization version   GIF version

Theorem ioombl 24169
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
ioombl (𝐴(,)𝐵) ∈ dom vol

Proof of Theorem ioombl
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snunioo 12867 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
213expa 1114 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
32adantrr 715 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
4 lbico1 12794 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
543expa 1114 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
65adantrr 715 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ (𝐴[,)𝐵))
76snssd 4745 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ (𝐴[,)𝐵))
8 iccid 12786 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
98ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,]𝐴) = {𝐴})
109ineq1d 4191 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ({𝐴} ∩ (𝐴(,)𝐵)))
11 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ*)
12 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐵 ∈ ℝ*)
13 df-icc 12748 . . . . . . . . . . 11 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
14 df-ioo 12745 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
15 xrltnle 10711 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
1613, 14, 15ixxdisj 12756 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1711, 11, 12, 16syl3anc 1367 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1810, 17eqtr3d 2861 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∩ (𝐴(,)𝐵)) = ∅)
19 uneqdifeq 4441 . . . . . . . 8 (({𝐴} ⊆ (𝐴[,)𝐵) ∧ ({𝐴} ∩ (𝐴(,)𝐵)) = ∅) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
207, 18, 19syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
213, 20mpbid 234 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
22 mnfxr 10701 . . . . . . . . . 10 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ ∈ ℝ*)
24 simprr 771 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ < 𝐴)
25 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 < 𝐵)
26 xrre2 12566 . . . . . . . . 9 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
2723, 11, 12, 24, 25, 26syl32anc 1374 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ)
28 icombl 24168 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
2927, 12, 28syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,)𝐵) ∈ dom vol)
3027snssd 4745 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ ℝ)
31 ovolsn 24099 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0)
3227, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (vol*‘{𝐴}) = 0)
33 nulmbl 24139 . . . . . . . 8 (({𝐴} ⊆ ℝ ∧ (vol*‘{𝐴}) = 0) → {𝐴} ∈ dom vol)
3430, 32, 33syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ∈ dom vol)
35 difmbl 24147 . . . . . . 7 (((𝐴[,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3629, 34, 35syl2anc 586 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3721, 36eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴(,)𝐵) ∈ dom vol)
3837expr 459 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
39 uncom 4132 . . . . . . . . 9 ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∪ (𝐵[,)+∞))
4022a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ∈ ℝ*)
41 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
42 pnfxr 10698 . . . . . . . . . . 11 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
44 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
45 mnfle 12532 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
4645ad2antrr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ≤ 𝐴)
47 simpr 487 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4840, 44, 41, 46, 47xrlelttrd 12556 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ < 𝐵)
49 pnfge 12528 . . . . . . . . . . 11 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
5041, 49syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
51 df-ico 12747 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
52 xrlenlt 10709 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
53 xrltletr 12553 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐵𝐵 ≤ +∞) → 𝑤 < +∞))
54 xrltletr 12553 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝑤) → -∞ < 𝑤))
5514, 51, 52, 14, 53, 54ixxun 12757 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 ≤ +∞)) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5640, 41, 43, 48, 50, 55syl32anc 1374 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5739, 56syl5eq 2871 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = (-∞(,)+∞))
58 ioomax 12814 . . . . . . . 8 (-∞(,)+∞) = ℝ
5957, 58syl6eq 2875 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ)
60 ssun1 4151 . . . . . . . . 9 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (-∞(,)𝐵))
6160, 59sseqtrid 4022 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ ℝ)
62 incom 4181 . . . . . . . . 9 ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∩ (𝐵[,)+∞))
6314, 51, 52ixxdisj 12756 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6440, 41, 43, 63syl3anc 1367 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6562, 64syl5eq 2871 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅)
66 uneqdifeq 4441 . . . . . . . 8 (((𝐵[,)+∞) ⊆ ℝ ∧ ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6761, 65, 66syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6859, 67mpbid 234 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵))
69 rembl 24144 . . . . . . 7 ℝ ∈ dom vol
70 xrleloe 12540 . . . . . . . . . . 11 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7141, 42, 70sylancl 588 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7250, 71mpbid 234 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
73 xrre2 12566 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
7473expr 459 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7542, 74mp3anl3 1453 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7675orim1d 962 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
7772, 76mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
78 icombl1 24167 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
79 oveq1 7166 . . . . . . . . . . 11 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
80 pnfge 12528 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → +∞ ≤ +∞)
8142, 80ax-mp 5 . . . . . . . . . . . 12 +∞ ≤ +∞
82 ico0 12787 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
8342, 42, 82mp2an 690 . . . . . . . . . . . 12 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
8481, 83mpbir 233 . . . . . . . . . . 11 (+∞[,)+∞) = ∅
8579, 84syl6eq 2875 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
86 0mbl 24143 . . . . . . . . . 10 ∅ ∈ dom vol
8785, 86eqeltrdi 2924 . . . . . . . . 9 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
8878, 87jaoi 853 . . . . . . . 8 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
8977, 88syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
90 difmbl 24147 . . . . . . 7 ((ℝ ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9169, 89, 90sylancr 589 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9268, 91eqeltrrd 2917 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞(,)𝐵) ∈ dom vol)
93 oveq1 7166 . . . . . 6 (-∞ = 𝐴 → (-∞(,)𝐵) = (𝐴(,)𝐵))
9493eleq1d 2900 . . . . 5 (-∞ = 𝐴 → ((-∞(,)𝐵) ∈ dom vol ↔ (𝐴(,)𝐵) ∈ dom vol))
9592, 94syl5ibcom 247 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ = 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
96 xrleloe 12540 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9722, 44, 96sylancr 589 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9846, 97mpbid 234 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 ∨ -∞ = 𝐴))
9938, 95, 98mpjaod 856 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
100 ioo0 12766 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
101 xrlenlt 10709 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
102101ancoms 461 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
103100, 102bitrd 281 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
104103biimpar 480 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) = ∅)
105104, 86eqeltrdi 2924 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
10699, 105pm2.61dan 811 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
107 ndmioo 12768 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
108107, 86eqeltrdi 2924 . 2 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
109106, 108pm2.61i 184 1 (𝐴(,)𝐵) ∈ dom vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4570   class class class wbr 5069  dom cdm 5558  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-xmet 20541  df-met 20542  df-ovol 24068  df-vol 24069
This theorem is referenced by:  iccmbl  24170  ovolioo  24172  volioo  24173  ioovolcl  24174  uniioovol  24183  uniioombllem4  24190  uniioombllem5  24191  opnmblALT  24207  mbfid  24239  ditgcl  24459  ditgswap  24460  ditgsplitlem  24461  ftc1lem1  24635  ftc1lem2  24636  ftc1a  24637  ftc1lem4  24639  ftc2  24644  ftc2ditglem  24645  itgsubstlem  24648  ftc2re  31873  fdvposlt  31874  fdvposle  31876  itgexpif  31881  circlemeth  31915  itg2gt0cn  34951  ftc1cnnclem  34969  ftc1anclem7  34977  ftc1anclem8  34978  ftc1anc  34979  ftc2nc  34980  areacirc  34991  iocmbl  39825  cnioobibld  39826  itgpowd  39827  lhe4.4ex1a  40667  itgsin0pilem1  42241  iblioosinexp  42244  itgsinexplem1  42245  itgsinexp  42246  itgcoscmulx  42260  volioc  42263  itgsincmulx  42265  iblcncfioo  42269  itgiccshift  42271  itgperiod  42272  itgsbtaddcnst  42273  volico  42275  volioof  42279  wallispilem2  42358  dirkeritg  42394  fourierdlem16  42415  fourierdlem21  42420  fourierdlem22  42421  fourierdlem39  42438  fourierdlem73  42471  fourierdlem83  42481  fourierdlem103  42501  fourierdlem104  42502  fourierdlem111  42509  fourierdlem112  42510  sqwvfoura  42520  sqwvfourb  42521  etransclem18  42544  etransclem23  42549  ovolval4lem1  42938  ovolval5lem1  42941
  Copyright terms: Public domain W3C validator