MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl Structured version   Visualization version   GIF version

Theorem ioombl 25619
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
ioombl (𝐴(,)𝐵) ∈ dom vol

Proof of Theorem ioombl
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snunioo 13538 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
213expa 1118 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
32adantrr 716 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
4 lbico1 13461 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
543expa 1118 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
65adantrr 716 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ (𝐴[,)𝐵))
76snssd 4834 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ (𝐴[,)𝐵))
8 iccid 13452 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
98ad2antrr 725 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,]𝐴) = {𝐴})
109ineq1d 4240 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ({𝐴} ∩ (𝐴(,)𝐵)))
11 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ*)
12 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐵 ∈ ℝ*)
13 df-icc 13414 . . . . . . . . . . 11 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
14 df-ioo 13411 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
15 xrltnle 11357 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
1613, 14, 15ixxdisj 13422 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1711, 11, 12, 16syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1810, 17eqtr3d 2782 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∩ (𝐴(,)𝐵)) = ∅)
19 uneqdifeq 4516 . . . . . . . 8 (({𝐴} ⊆ (𝐴[,)𝐵) ∧ ({𝐴} ∩ (𝐴(,)𝐵)) = ∅) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
207, 18, 19syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
213, 20mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
22 mnfxr 11347 . . . . . . . . . 10 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ ∈ ℝ*)
24 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ < 𝐴)
25 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 < 𝐵)
26 xrre2 13232 . . . . . . . . 9 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
2723, 11, 12, 24, 25, 26syl32anc 1378 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ)
28 icombl 25618 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
2927, 12, 28syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,)𝐵) ∈ dom vol)
3027snssd 4834 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ ℝ)
31 ovolsn 25549 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0)
3227, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (vol*‘{𝐴}) = 0)
33 nulmbl 25589 . . . . . . . 8 (({𝐴} ⊆ ℝ ∧ (vol*‘{𝐴}) = 0) → {𝐴} ∈ dom vol)
3430, 32, 33syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ∈ dom vol)
35 difmbl 25597 . . . . . . 7 (((𝐴[,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3629, 34, 35syl2anc 583 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3721, 36eqeltrrd 2845 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴(,)𝐵) ∈ dom vol)
3837expr 456 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
39 uncom 4181 . . . . . . . . 9 ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∪ (𝐵[,)+∞))
4022a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ∈ ℝ*)
41 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
42 pnfxr 11344 . . . . . . . . . . 11 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
44 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
45 mnfle 13197 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
4645ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ≤ 𝐴)
47 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4840, 44, 41, 46, 47xrlelttrd 13222 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ < 𝐵)
49 pnfge 13193 . . . . . . . . . . 11 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
5041, 49syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
51 df-ico 13413 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
52 xrlenlt 11355 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
53 xrltletr 13219 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐵𝐵 ≤ +∞) → 𝑤 < +∞))
54 xrltletr 13219 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝑤) → -∞ < 𝑤))
5514, 51, 52, 14, 53, 54ixxun 13423 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 ≤ +∞)) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5640, 41, 43, 48, 50, 55syl32anc 1378 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5739, 56eqtrid 2792 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = (-∞(,)+∞))
58 ioomax 13482 . . . . . . . 8 (-∞(,)+∞) = ℝ
5957, 58eqtrdi 2796 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ)
60 ssun1 4201 . . . . . . . . 9 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (-∞(,)𝐵))
6160, 59sseqtrid 4061 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ ℝ)
62 incom 4230 . . . . . . . . 9 ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∩ (𝐵[,)+∞))
6314, 51, 52ixxdisj 13422 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6440, 41, 43, 63syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6562, 64eqtrid 2792 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅)
66 uneqdifeq 4516 . . . . . . . 8 (((𝐵[,)+∞) ⊆ ℝ ∧ ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6761, 65, 66syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6859, 67mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵))
69 rembl 25594 . . . . . . 7 ℝ ∈ dom vol
70 xrleloe 13206 . . . . . . . . . . 11 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7141, 42, 70sylancl 585 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7250, 71mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
73 xrre2 13232 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
7473expr 456 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7542, 74mp3anl3 1457 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7675orim1d 966 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
7772, 76mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
78 icombl1 25617 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
79 oveq1 7455 . . . . . . . . . . 11 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
80 pnfge 13193 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → +∞ ≤ +∞)
8142, 80ax-mp 5 . . . . . . . . . . . 12 +∞ ≤ +∞
82 ico0 13453 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
8342, 42, 82mp2an 691 . . . . . . . . . . . 12 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
8481, 83mpbir 231 . . . . . . . . . . 11 (+∞[,)+∞) = ∅
8579, 84eqtrdi 2796 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
86 0mbl 25593 . . . . . . . . . 10 ∅ ∈ dom vol
8785, 86eqeltrdi 2852 . . . . . . . . 9 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
8878, 87jaoi 856 . . . . . . . 8 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
8977, 88syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
90 difmbl 25597 . . . . . . 7 ((ℝ ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9169, 89, 90sylancr 586 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9268, 91eqeltrrd 2845 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞(,)𝐵) ∈ dom vol)
93 oveq1 7455 . . . . . 6 (-∞ = 𝐴 → (-∞(,)𝐵) = (𝐴(,)𝐵))
9493eleq1d 2829 . . . . 5 (-∞ = 𝐴 → ((-∞(,)𝐵) ∈ dom vol ↔ (𝐴(,)𝐵) ∈ dom vol))
9592, 94syl5ibcom 245 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ = 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
96 xrleloe 13206 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9722, 44, 96sylancr 586 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9846, 97mpbid 232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 ∨ -∞ = 𝐴))
9938, 95, 98mpjaod 859 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
100 ioo0 13432 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
101 xrlenlt 11355 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
102101ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
103100, 102bitrd 279 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
104103biimpar 477 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) = ∅)
105104, 86eqeltrdi 2852 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
10699, 105pm2.61dan 812 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
107 ndmioo 13434 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
108107, 86eqeltrdi 2852 . 2 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
109106, 108pm2.61i 182 1 (𝐴(,)𝐵) ∈ dom vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519
This theorem is referenced by:  iccmbl  25620  ovolioo  25622  volioo  25623  ioovolcl  25624  uniioovol  25633  uniioombllem4  25640  uniioombllem5  25641  opnmblALT  25657  mbfid  25689  ditgcl  25913  ditgswap  25914  ditgsplitlem  25915  ftc1lem1  26096  ftc1lem2  26097  ftc1a  26098  ftc1lem4  26100  ftc2  26105  ftc2ditglem  26106  itgsubstlem  26109  itgpowd  26111  ftc2re  34575  fdvposlt  34576  fdvposle  34578  itgexpif  34583  circlemeth  34617  itg2gt0cn  37635  ftc1cnnclem  37651  ftc1anclem7  37659  ftc1anclem8  37660  ftc1anc  37661  ftc2nc  37662  areacirc  37673  lcmineqlem10  41995  lcmineqlem12  41997  iocmbl  43174  cnioobibld  43175  lhe4.4ex1a  44298  itgsin0pilem1  45871  iblioosinexp  45874  itgsinexplem1  45875  itgsinexp  45876  itgcoscmulx  45890  volioc  45893  itgsincmulx  45895  iblcncfioo  45899  itgiccshift  45901  itgperiod  45902  itgsbtaddcnst  45903  volico  45904  volioof  45908  wallispilem2  45987  dirkeritg  46023  fourierdlem16  46044  fourierdlem21  46049  fourierdlem22  46050  fourierdlem39  46067  fourierdlem73  46100  fourierdlem83  46110  fourierdlem103  46130  fourierdlem104  46131  fourierdlem111  46138  fourierdlem112  46139  sqwvfoura  46149  sqwvfourb  46150  etransclem18  46173  etransclem23  46178  ovolval4lem1  46570  ovolval5lem1  46573
  Copyright terms: Public domain W3C validator