MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Visualization version   GIF version

Theorem tanord1 26446
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 26447.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 fveq2 6858 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6858 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6858 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 0re 11176 . . . 4 0 ∈ ℝ
6 halfpire 26373 . . . . 5 (π / 2) ∈ ℝ
76rexri 11232 . . . 4 (π / 2) ∈ ℝ*
8 icossre 13389 . . . 4 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π / 2)) ⊆ ℝ)
95, 7, 8mp2an 692 . . 3 (0[,)(π / 2)) ⊆ ℝ
109sseli 3942 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℝ)
11 neghalfpirx 26375 . . . . . . . . 9 -(π / 2) ∈ ℝ*
12 pire 26366 . . . . . . . . . . 11 π ∈ ℝ
13 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
14 pipos 26368 . . . . . . . . . . 11 0 < π
15 2pos 12289 . . . . . . . . . . 11 0 < 2
1612, 13, 14, 15divgt0ii 12100 . . . . . . . . . 10 0 < (π / 2)
17 lt0neg2 11685 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
186, 17ax-mp 5 . . . . . . . . . 10 (0 < (π / 2) ↔ -(π / 2) < 0)
1916, 18mpbi 230 . . . . . . . . 9 -(π / 2) < 0
20 df-ioo 13310 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21 df-ico 13312 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
22 xrltletr 13117 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤))
2320, 21, 22ixxss1 13324 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
2411, 19, 23mp2an 692 . . . . . . . 8 (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
2524sseli 3942 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
26 cosq14gt0 26419 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑥))
2725, 26syl 17 . . . . . 6 (𝑥 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑥))
2827gt0ne0d 11742 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ≠ 0)
2910, 28retancld 16113 . . . 4 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
3029adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
3110resincld 16111 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (sin‘𝑥) ∈ ℝ)
3210recoscld 16112 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ∈ ℝ)
3331, 32, 28redivcld 12010 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
34333ad2ant1 1133 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
359sseli 3942 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℝ)
36353ad2ant2 1134 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736resincld 16111 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈ ℝ)
38323ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈ ℝ)
39283ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0)
4037, 38, 39redivcld 12010 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈ ℝ)
4136recoscld 16112 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈ ℝ)
4224sseli 3942 . . . . . . . . . . 11 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
43 cosq14gt0 26419 . . . . . . . . . . 11 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑦))
4442, 43syl 17 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑦))
4544gt0ne0d 11742 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) → (cos‘𝑦) ≠ 0)
46453ad2ant2 1134 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0)
4737, 41, 46redivcld 12010 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈ ℝ)
48 ioossicc 13394 . . . . . . . . . . . 12 (-(π / 2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
4924, 48sstri 3956 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
5049sseli 3942 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)[,](π / 2)))
5149sseli 3942 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)[,](π / 2)))
52 sinord 26443 . . . . . . . . . 10 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5350, 51, 52syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5453biimp3a 1471 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦))
55103ad2ant1 1133 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
5655resincld 16111 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈ ℝ)
57273ad2ant1 1133 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥))
58 ltdiv1 12047 . . . . . . . . 9 (((sin‘𝑥) ∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥))) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
5956, 37, 38, 57, 58syl112anc 1376 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
6054, 59mpbid 232 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))
6112rexri 11232 . . . . . . . . . . . 12 π ∈ ℝ*
62 pirp 26370 . . . . . . . . . . . . 13 π ∈ ℝ+
63 rphalflt 12982 . . . . . . . . . . . . 13 (π ∈ ℝ+ → (π / 2) < π)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π / 2) < π
65 df-icc 13313 . . . . . . . . . . . . 13 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
66 xrlttr 13100 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 < π))
67 xrltle 13109 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
68673adant2 1131 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
6966, 68syld 47 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 ≤ π))
7065, 21, 69ixxss2 13325 . . . . . . . . . . . 12 ((π ∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2)) ⊆ (0[,]π))
7161, 64, 70mp2an 692 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (0[,]π)
7271sseli 3942 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (0[,]π))
7371sseli 3942 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (0[,]π))
74 cosord 26440 . . . . . . . . . 10 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7572, 73, 74syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7675biimp3a 1471 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
77 0red 11177 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
78 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2)))
79 elico2 13371 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
805, 7, 79mp2an 692 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8178, 80sylib 218 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8281simp2d 1143 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ≤ 𝑥)
83 simp3 1138 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
8477, 55, 36, 82, 83lelttrd 11332 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < 𝑦)
85 simp2 1137 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2)))
86 elico2 13371 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
875, 7, 86mp2an 692 . . . . . . . . . . . . . 14 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8885, 87sylib 218 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8988simp3d 1144 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 < (π / 2))
90 0xr 11221 . . . . . . . . . . . . 13 0 ∈ ℝ*
91 elioo2 13347 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
9290, 7, 91mp2an 692 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
9336, 84, 89, 92syl3anbrc 1344 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2)))
94 sincosq1sgn 26407 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 2)) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9593, 94syl 17 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9695simprd 495 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦))
9795simpld 494 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦))
98 ltdiv2 12069 . . . . . . . . 9 ((((cos‘𝑦) ∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥)) ∧ ((sin‘𝑦) ∈ ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
9941, 96, 38, 57, 37, 97, 98syl222anc 1388 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
10076, 99mpbid 232 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10134, 40, 47, 60, 100lttrd 11335 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10210recnd 11202 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℂ)
103 tanval 16096 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ≠ 0) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
104102, 28, 103syl2anc 584 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
1051043ad2ant1 1133 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
10635recnd 11202 . . . . . . . 8 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℂ)
1071063ad2ant2 1134 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
108 tanval 16096 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (cos‘𝑦) ≠ 0) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
109107, 46, 108syl2anc 584 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
110101, 105, 1093brtr4d 5139 . . . . 5 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1111103expia 1121 . . . 4 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
112111adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1132, 3, 4, 9, 30, 112ltord1 11704 . 2 ((⊤ ∧ (𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1141, 113mpan 690 1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  *cxr 11207   < clt 11208  cle 11209  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  sincsin 16029  cosccos 16030  tanctan 16031  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  tanord  26447
  Copyright terms: Public domain W3C validator