MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Visualization version   GIF version

Theorem tanord1 25693
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 25694.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1543 . 2
2 fveq2 6774 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6774 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6774 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 0re 10977 . . . 4 0 ∈ ℝ
6 halfpire 25621 . . . . 5 (π / 2) ∈ ℝ
76rexri 11033 . . . 4 (π / 2) ∈ ℝ*
8 icossre 13160 . . . 4 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π / 2)) ⊆ ℝ)
95, 7, 8mp2an 689 . . 3 (0[,)(π / 2)) ⊆ ℝ
109sseli 3917 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℝ)
11 neghalfpirx 25623 . . . . . . . . 9 -(π / 2) ∈ ℝ*
12 pire 25615 . . . . . . . . . . 11 π ∈ ℝ
13 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
14 pipos 25617 . . . . . . . . . . 11 0 < π
15 2pos 12076 . . . . . . . . . . 11 0 < 2
1612, 13, 14, 15divgt0ii 11892 . . . . . . . . . 10 0 < (π / 2)
17 lt0neg2 11482 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
186, 17ax-mp 5 . . . . . . . . . 10 (0 < (π / 2) ↔ -(π / 2) < 0)
1916, 18mpbi 229 . . . . . . . . 9 -(π / 2) < 0
20 df-ioo 13083 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21 df-ico 13085 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
22 xrltletr 12891 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤))
2320, 21, 22ixxss1 13097 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
2411, 19, 23mp2an 689 . . . . . . . 8 (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
2524sseli 3917 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
26 cosq14gt0 25667 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑥))
2725, 26syl 17 . . . . . 6 (𝑥 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑥))
2827gt0ne0d 11539 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ≠ 0)
2910, 28retancld 15854 . . . 4 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
3029adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
3110resincld 15852 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (sin‘𝑥) ∈ ℝ)
3210recoscld 15853 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ∈ ℝ)
3331, 32, 28redivcld 11803 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
34333ad2ant1 1132 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
359sseli 3917 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℝ)
36353ad2ant2 1133 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736resincld 15852 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈ ℝ)
38323ad2ant1 1132 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈ ℝ)
39283ad2ant1 1132 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0)
4037, 38, 39redivcld 11803 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈ ℝ)
4136recoscld 15853 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈ ℝ)
4224sseli 3917 . . . . . . . . . . 11 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
43 cosq14gt0 25667 . . . . . . . . . . 11 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑦))
4442, 43syl 17 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑦))
4544gt0ne0d 11539 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) → (cos‘𝑦) ≠ 0)
46453ad2ant2 1133 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0)
4737, 41, 46redivcld 11803 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈ ℝ)
48 ioossicc 13165 . . . . . . . . . . . 12 (-(π / 2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
4924, 48sstri 3930 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
5049sseli 3917 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)[,](π / 2)))
5149sseli 3917 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)[,](π / 2)))
52 sinord 25690 . . . . . . . . . 10 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5350, 51, 52syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5453biimp3a 1468 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦))
55103ad2ant1 1132 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
5655resincld 15852 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈ ℝ)
57273ad2ant1 1132 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥))
58 ltdiv1 11839 . . . . . . . . 9 (((sin‘𝑥) ∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥))) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
5956, 37, 38, 57, 58syl112anc 1373 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
6054, 59mpbid 231 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))
6112rexri 11033 . . . . . . . . . . . 12 π ∈ ℝ*
62 pirp 25618 . . . . . . . . . . . . 13 π ∈ ℝ+
63 rphalflt 12759 . . . . . . . . . . . . 13 (π ∈ ℝ+ → (π / 2) < π)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π / 2) < π
65 df-icc 13086 . . . . . . . . . . . . 13 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
66 xrlttr 12874 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 < π))
67 xrltle 12883 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
68673adant2 1130 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
6966, 68syld 47 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 ≤ π))
7065, 21, 69ixxss2 13098 . . . . . . . . . . . 12 ((π ∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2)) ⊆ (0[,]π))
7161, 64, 70mp2an 689 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (0[,]π)
7271sseli 3917 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (0[,]π))
7371sseli 3917 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (0[,]π))
74 cosord 25687 . . . . . . . . . 10 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7572, 73, 74syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7675biimp3a 1468 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
77 0red 10978 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
78 simp1 1135 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2)))
79 elico2 13143 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
805, 7, 79mp2an 689 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8178, 80sylib 217 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8281simp2d 1142 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ≤ 𝑥)
83 simp3 1137 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
8477, 55, 36, 82, 83lelttrd 11133 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < 𝑦)
85 simp2 1136 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2)))
86 elico2 13143 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
875, 7, 86mp2an 689 . . . . . . . . . . . . . 14 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8885, 87sylib 217 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8988simp3d 1143 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 < (π / 2))
90 0xr 11022 . . . . . . . . . . . . 13 0 ∈ ℝ*
91 elioo2 13120 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
9290, 7, 91mp2an 689 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
9336, 84, 89, 92syl3anbrc 1342 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2)))
94 sincosq1sgn 25655 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 2)) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9593, 94syl 17 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9695simprd 496 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦))
9795simpld 495 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦))
98 ltdiv2 11861 . . . . . . . . 9 ((((cos‘𝑦) ∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥)) ∧ ((sin‘𝑦) ∈ ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
9941, 96, 38, 57, 37, 97, 98syl222anc 1385 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
10076, 99mpbid 231 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10134, 40, 47, 60, 100lttrd 11136 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10210recnd 11003 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℂ)
103 tanval 15837 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ≠ 0) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
104102, 28, 103syl2anc 584 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
1051043ad2ant1 1132 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
10635recnd 11003 . . . . . . . 8 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℂ)
1071063ad2ant2 1133 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
108 tanval 15837 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (cos‘𝑦) ≠ 0) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
109107, 46, 108syl2anc 584 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
110101, 105, 1093brtr4d 5106 . . . . 5 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1111103expia 1120 . . . 4 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
112111adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1132, 3, 4, 9, 30, 112ltord1 11501 . 2 ((⊤ ∧ (𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1141, 113mpan 687 1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  *cxr 11008   < clt 11009  cle 11010  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  sincsin 15773  cosccos 15774  tanctan 15775  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  tanord  25694
  Copyright terms: Public domain W3C validator