MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Visualization version   GIF version

Theorem tanord1 25129
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 25130.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1542 . 2
2 fveq2 6645 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6645 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6645 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 0re 10632 . . . 4 0 ∈ ℝ
6 halfpire 25057 . . . . 5 (π / 2) ∈ ℝ
76rexri 10688 . . . 4 (π / 2) ∈ ℝ*
8 icossre 12806 . . . 4 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π / 2)) ⊆ ℝ)
95, 7, 8mp2an 691 . . 3 (0[,)(π / 2)) ⊆ ℝ
109sseli 3911 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℝ)
11 neghalfpirx 25059 . . . . . . . . 9 -(π / 2) ∈ ℝ*
12 pire 25051 . . . . . . . . . . 11 π ∈ ℝ
13 2re 11699 . . . . . . . . . . 11 2 ∈ ℝ
14 pipos 25053 . . . . . . . . . . 11 0 < π
15 2pos 11728 . . . . . . . . . . 11 0 < 2
1612, 13, 14, 15divgt0ii 11546 . . . . . . . . . 10 0 < (π / 2)
17 lt0neg2 11136 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
186, 17ax-mp 5 . . . . . . . . . 10 (0 < (π / 2) ↔ -(π / 2) < 0)
1916, 18mpbi 233 . . . . . . . . 9 -(π / 2) < 0
20 df-ioo 12730 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21 df-ico 12732 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
22 xrltletr 12538 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤))
2320, 21, 22ixxss1 12744 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
2411, 19, 23mp2an 691 . . . . . . . 8 (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
2524sseli 3911 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
26 cosq14gt0 25103 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑥))
2725, 26syl 17 . . . . . 6 (𝑥 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑥))
2827gt0ne0d 11193 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ≠ 0)
2910, 28retancld 15490 . . . 4 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
3029adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
3110resincld 15488 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (sin‘𝑥) ∈ ℝ)
3210recoscld 15489 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ∈ ℝ)
3331, 32, 28redivcld 11457 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
34333ad2ant1 1130 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
359sseli 3911 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℝ)
36353ad2ant2 1131 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736resincld 15488 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈ ℝ)
38323ad2ant1 1130 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈ ℝ)
39283ad2ant1 1130 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0)
4037, 38, 39redivcld 11457 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈ ℝ)
4136recoscld 15489 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈ ℝ)
4224sseli 3911 . . . . . . . . . . 11 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
43 cosq14gt0 25103 . . . . . . . . . . 11 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑦))
4442, 43syl 17 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑦))
4544gt0ne0d 11193 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) → (cos‘𝑦) ≠ 0)
46453ad2ant2 1131 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0)
4737, 41, 46redivcld 11457 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈ ℝ)
48 ioossicc 12811 . . . . . . . . . . . 12 (-(π / 2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
4924, 48sstri 3924 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
5049sseli 3911 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)[,](π / 2)))
5149sseli 3911 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)[,](π / 2)))
52 sinord 25126 . . . . . . . . . 10 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5350, 51, 52syl2an 598 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5453biimp3a 1466 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦))
55103ad2ant1 1130 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
5655resincld 15488 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈ ℝ)
57273ad2ant1 1130 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥))
58 ltdiv1 11493 . . . . . . . . 9 (((sin‘𝑥) ∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥))) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
5956, 37, 38, 57, 58syl112anc 1371 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
6054, 59mpbid 235 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))
6112rexri 10688 . . . . . . . . . . . 12 π ∈ ℝ*
62 pirp 25054 . . . . . . . . . . . . 13 π ∈ ℝ+
63 rphalflt 12406 . . . . . . . . . . . . 13 (π ∈ ℝ+ → (π / 2) < π)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π / 2) < π
65 df-icc 12733 . . . . . . . . . . . . 13 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
66 xrlttr 12521 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 < π))
67 xrltle 12530 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
68673adant2 1128 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
6966, 68syld 47 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 ≤ π))
7065, 21, 69ixxss2 12745 . . . . . . . . . . . 12 ((π ∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2)) ⊆ (0[,]π))
7161, 64, 70mp2an 691 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (0[,]π)
7271sseli 3911 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (0[,]π))
7371sseli 3911 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (0[,]π))
74 cosord 25123 . . . . . . . . . 10 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7572, 73, 74syl2an 598 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7675biimp3a 1466 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
77 0red 10633 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
78 simp1 1133 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2)))
79 elico2 12789 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
805, 7, 79mp2an 691 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8178, 80sylib 221 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8281simp2d 1140 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ≤ 𝑥)
83 simp3 1135 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
8477, 55, 36, 82, 83lelttrd 10787 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < 𝑦)
85 simp2 1134 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2)))
86 elico2 12789 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
875, 7, 86mp2an 691 . . . . . . . . . . . . . 14 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8885, 87sylib 221 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8988simp3d 1141 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 < (π / 2))
90 0xr 10677 . . . . . . . . . . . . 13 0 ∈ ℝ*
91 elioo2 12767 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
9290, 7, 91mp2an 691 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
9336, 84, 89, 92syl3anbrc 1340 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2)))
94 sincosq1sgn 25091 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 2)) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9593, 94syl 17 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9695simprd 499 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦))
9795simpld 498 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦))
98 ltdiv2 11515 . . . . . . . . 9 ((((cos‘𝑦) ∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥)) ∧ ((sin‘𝑦) ∈ ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
9941, 96, 38, 57, 37, 97, 98syl222anc 1383 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
10076, 99mpbid 235 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10134, 40, 47, 60, 100lttrd 10790 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10210recnd 10658 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℂ)
103 tanval 15473 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ≠ 0) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
104102, 28, 103syl2anc 587 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
1051043ad2ant1 1130 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
10635recnd 10658 . . . . . . . 8 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℂ)
1071063ad2ant2 1131 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
108 tanval 15473 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (cos‘𝑦) ≠ 0) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
109107, 46, 108syl2anc 587 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
110101, 105, 1093brtr4d 5062 . . . . 5 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1111103expia 1118 . . . 4 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
112111adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1132, 3, 4, 9, 30, 112ltord1 11155 . 2 ((⊤ ∧ (𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1141, 113mpan 689 1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2987  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  -cneg 10860   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  sincsin 15409  cosccos 15410  tanctan 15411  πcpi 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  tanord  25130
  Copyright terms: Public domain W3C validator