MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Visualization version   GIF version

Theorem tanord1 26453
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 26454.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 fveq2 6861 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6861 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6861 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 0re 11183 . . . 4 0 ∈ ℝ
6 halfpire 26380 . . . . 5 (π / 2) ∈ ℝ
76rexri 11239 . . . 4 (π / 2) ∈ ℝ*
8 icossre 13396 . . . 4 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π / 2)) ⊆ ℝ)
95, 7, 8mp2an 692 . . 3 (0[,)(π / 2)) ⊆ ℝ
109sseli 3945 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℝ)
11 neghalfpirx 26382 . . . . . . . . 9 -(π / 2) ∈ ℝ*
12 pire 26373 . . . . . . . . . . 11 π ∈ ℝ
13 2re 12267 . . . . . . . . . . 11 2 ∈ ℝ
14 pipos 26375 . . . . . . . . . . 11 0 < π
15 2pos 12296 . . . . . . . . . . 11 0 < 2
1612, 13, 14, 15divgt0ii 12107 . . . . . . . . . 10 0 < (π / 2)
17 lt0neg2 11692 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
186, 17ax-mp 5 . . . . . . . . . 10 (0 < (π / 2) ↔ -(π / 2) < 0)
1916, 18mpbi 230 . . . . . . . . 9 -(π / 2) < 0
20 df-ioo 13317 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21 df-ico 13319 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
22 xrltletr 13124 . . . . . . . . . 10 ((-(π / 2) ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤))
2320, 21, 22ixxss1 13331 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
2411, 19, 23mp2an 692 . . . . . . . 8 (0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
2524sseli 3945 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
26 cosq14gt0 26426 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑥))
2725, 26syl 17 . . . . . 6 (𝑥 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑥))
2827gt0ne0d 11749 . . . . 5 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ≠ 0)
2910, 28retancld 16120 . . . 4 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
3029adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
3110resincld 16118 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (sin‘𝑥) ∈ ℝ)
3210recoscld 16119 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) → (cos‘𝑥) ∈ ℝ)
3331, 32, 28redivcld 12017 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
34333ad2ant1 1133 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈ ℝ)
359sseli 3945 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℝ)
36353ad2ant2 1134 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736resincld 16118 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈ ℝ)
38323ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈ ℝ)
39283ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0)
4037, 38, 39redivcld 12017 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈ ℝ)
4136recoscld 16119 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈ ℝ)
4224sseli 3945 . . . . . . . . . . 11 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
43 cosq14gt0 26426 . . . . . . . . . . 11 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝑦))
4442, 43syl 17 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 0 < (cos‘𝑦))
4544gt0ne0d 11749 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) → (cos‘𝑦) ≠ 0)
46453ad2ant2 1134 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0)
4737, 41, 46redivcld 12017 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈ ℝ)
48 ioossicc 13401 . . . . . . . . . . . 12 (-(π / 2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
4924, 48sstri 3959 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2))
5049sseli 3945 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (-(π / 2)[,](π / 2)))
5149sseli 3945 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (-(π / 2)[,](π / 2)))
52 sinord 26450 . . . . . . . . . 10 ((𝑥 ∈ (-(π / 2)[,](π / 2)) ∧ 𝑦 ∈ (-(π / 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5350, 51, 52syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦)))
5453biimp3a 1471 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦))
55103ad2ant1 1133 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
5655resincld 16118 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈ ℝ)
57273ad2ant1 1133 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥))
58 ltdiv1 12054 . . . . . . . . 9 (((sin‘𝑥) ∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥))) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
5956, 37, 38, 57, 58syl112anc 1376 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))))
6054, 59mpbid 232 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))
6112rexri 11239 . . . . . . . . . . . 12 π ∈ ℝ*
62 pirp 26377 . . . . . . . . . . . . 13 π ∈ ℝ+
63 rphalflt 12989 . . . . . . . . . . . . 13 (π ∈ ℝ+ → (π / 2) < π)
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π / 2) < π
65 df-icc 13320 . . . . . . . . . . . . 13 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
66 xrlttr 13107 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 < π))
67 xrltle 13116 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
68673adant2 1131 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
6966, 68syld 47 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π) → 𝑤 ≤ π))
7065, 21, 69ixxss2 13332 . . . . . . . . . . . 12 ((π ∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2)) ⊆ (0[,]π))
7161, 64, 70mp2an 692 . . . . . . . . . . 11 (0[,)(π / 2)) ⊆ (0[,]π)
7271sseli 3945 . . . . . . . . . 10 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ (0[,]π))
7371sseli 3945 . . . . . . . . . 10 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ (0[,]π))
74 cosord 26447 . . . . . . . . . 10 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7572, 73, 74syl2an 596 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥)))
7675biimp3a 1471 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
77 0red 11184 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
78 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2)))
79 elico2 13378 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
805, 7, 79mp2an 692 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8178, 80sylib 218 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
8281simp2d 1143 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ≤ 𝑥)
83 simp3 1138 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
8477, 55, 36, 82, 83lelttrd 11339 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < 𝑦)
85 simp2 1137 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2)))
86 elico2 13378 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
875, 7, 86mp2an 692 . . . . . . . . . . . . . 14 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8885, 87sylib 218 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
8988simp3d 1144 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 < (π / 2))
90 0xr 11228 . . . . . . . . . . . . 13 0 ∈ ℝ*
91 elioo2 13354 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
9290, 7, 91mp2an 692 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
9336, 84, 89, 92syl3anbrc 1344 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2)))
94 sincosq1sgn 26414 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 2)) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9593, 94syl 17 . . . . . . . . . 10 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (0 < (sin‘𝑦) ∧ 0 < (cos‘𝑦)))
9695simprd 495 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦))
9795simpld 494 . . . . . . . . 9 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦))
98 ltdiv2 12076 . . . . . . . . 9 ((((cos‘𝑦) ∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 < (cos‘𝑥)) ∧ ((sin‘𝑦) ∈ ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
9941, 96, 38, 57, 37, 97, 98syl222anc 1388 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))))
10076, 99mpbid 232 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10134, 40, 47, 60, 100lttrd 11342 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))
10210recnd 11209 . . . . . . . 8 (𝑥 ∈ (0[,)(π / 2)) → 𝑥 ∈ ℂ)
103 tanval 16103 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ≠ 0) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
104102, 28, 103syl2anc 584 . . . . . . 7 (𝑥 ∈ (0[,)(π / 2)) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
1051043ad2ant1 1133 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥)))
10635recnd 11209 . . . . . . . 8 (𝑦 ∈ (0[,)(π / 2)) → 𝑦 ∈ ℂ)
1071063ad2ant2 1134 . . . . . . 7 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
108 tanval 16103 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (cos‘𝑦) ≠ 0) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
109107, 46, 108syl2anc 584 . . . . . 6 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦)))
110101, 105, 1093brtr4d 5142 . . . . 5 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1111103expia 1121 . . . 4 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
112111adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1132, 3, 4, 9, 30, 112ltord1 11711 . 2 ((⊤ ∧ (𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1141, 113mpan 690 1 ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  *cxr 11214   < clt 11215  cle 11216  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  sincsin 16036  cosccos 16037  tanctan 16038  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  tanord  26454
  Copyright terms: Public domain W3C validator