Step | Hyp | Ref
| Expression |
1 | | tru 1543 |
. 2
⊢
⊤ |
2 | | fveq2 6774 |
. . 3
⊢ (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦)) |
3 | | fveq2 6774 |
. . 3
⊢ (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴)) |
4 | | fveq2 6774 |
. . 3
⊢ (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵)) |
5 | | 0re 10977 |
. . . 4
⊢ 0 ∈
ℝ |
6 | | halfpire 25621 |
. . . . 5
⊢ (π /
2) ∈ ℝ |
7 | 6 | rexri 11033 |
. . . 4
⊢ (π /
2) ∈ ℝ* |
8 | | icossre 13160 |
. . . 4
⊢ ((0
∈ ℝ ∧ (π / 2) ∈ ℝ*) → (0[,)(π /
2)) ⊆ ℝ) |
9 | 5, 7, 8 | mp2an 689 |
. . 3
⊢
(0[,)(π / 2)) ⊆ ℝ |
10 | 9 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ (0[,)(π / 2)) →
𝑥 ∈
ℝ) |
11 | | neghalfpirx 25623 |
. . . . . . . . 9
⊢ -(π /
2) ∈ ℝ* |
12 | | pire 25615 |
. . . . . . . . . . 11
⊢ π
∈ ℝ |
13 | | 2re 12047 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
14 | | pipos 25617 |
. . . . . . . . . . 11
⊢ 0 <
π |
15 | | 2pos 12076 |
. . . . . . . . . . 11
⊢ 0 <
2 |
16 | 12, 13, 14, 15 | divgt0ii 11892 |
. . . . . . . . . 10
⊢ 0 <
(π / 2) |
17 | | lt0neg2 11482 |
. . . . . . . . . . 11
⊢ ((π /
2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) <
0)) |
18 | 6, 17 | ax-mp 5 |
. . . . . . . . . 10
⊢ (0 <
(π / 2) ↔ -(π / 2) < 0) |
19 | 16, 18 | mpbi 229 |
. . . . . . . . 9
⊢ -(π /
2) < 0 |
20 | | df-ioo 13083 |
. . . . . . . . . 10
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
21 | | df-ico 13085 |
. . . . . . . . . 10
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
22 | | xrltletr 12891 |
. . . . . . . . . 10
⊢ ((-(π
/ 2) ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((-(π / 2) < 0 ∧ 0 ≤ 𝑤) → -(π / 2) < 𝑤)) |
23 | 20, 21, 22 | ixxss1 13097 |
. . . . . . . . 9
⊢ ((-(π
/ 2) ∈ ℝ* ∧ -(π / 2) < 0) → (0[,)(π /
2)) ⊆ (-(π / 2)(,)(π / 2))) |
24 | 11, 19, 23 | mp2an 689 |
. . . . . . . 8
⊢
(0[,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)) |
25 | 24 | sseli 3917 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)(π / 2)) →
𝑥 ∈ (-(π /
2)(,)(π / 2))) |
26 | | cosq14gt0 25667 |
. . . . . . 7
⊢ (𝑥 ∈ (-(π / 2)(,)(π /
2)) → 0 < (cos‘𝑥)) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)(π / 2)) →
0 < (cos‘𝑥)) |
28 | 27 | gt0ne0d 11539 |
. . . . 5
⊢ (𝑥 ∈ (0[,)(π / 2)) →
(cos‘𝑥) ≠
0) |
29 | 10, 28 | retancld 15854 |
. . . 4
⊢ (𝑥 ∈ (0[,)(π / 2)) →
(tan‘𝑥) ∈
ℝ) |
30 | 29 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (0[,)(π / 2))) → (tan‘𝑥) ∈ ℝ) |
31 | 10 | resincld 15852 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,)(π / 2)) →
(sin‘𝑥) ∈
ℝ) |
32 | 10 | recoscld 15853 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,)(π / 2)) →
(cos‘𝑥) ∈
ℝ) |
33 | 31, 32, 28 | redivcld 11803 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,)(π / 2)) →
((sin‘𝑥) /
(cos‘𝑥)) ∈
ℝ) |
34 | 33 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) ∈
ℝ) |
35 | 9 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)(π / 2)) →
𝑦 ∈
ℝ) |
36 | 35 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) |
37 | 36 | resincld 15852 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (sin‘𝑦) ∈
ℝ) |
38 | 32 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (cos‘𝑥) ∈
ℝ) |
39 | 28 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (cos‘𝑥) ≠ 0) |
40 | 37, 38, 39 | redivcld 11803 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) ∈
ℝ) |
41 | 36 | recoscld 15853 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (cos‘𝑦) ∈
ℝ) |
42 | 24 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0[,)(π / 2)) →
𝑦 ∈ (-(π /
2)(,)(π / 2))) |
43 | | cosq14gt0 25667 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (-(π / 2)(,)(π /
2)) → 0 < (cos‘𝑦)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)(π / 2)) →
0 < (cos‘𝑦)) |
45 | 44 | gt0ne0d 11539 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,)(π / 2)) →
(cos‘𝑦) ≠
0) |
46 | 45 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (cos‘𝑦) ≠ 0) |
47 | 37, 41, 46 | redivcld 11803 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑦)) ∈
ℝ) |
48 | | ioossicc 13165 |
. . . . . . . . . . . 12
⊢ (-(π /
2)(,)(π / 2)) ⊆ (-(π / 2)[,](π / 2)) |
49 | 24, 48 | sstri 3930 |
. . . . . . . . . . 11
⊢
(0[,)(π / 2)) ⊆ (-(π / 2)[,](π / 2)) |
50 | 49 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,)(π / 2)) →
𝑥 ∈ (-(π /
2)[,](π / 2))) |
51 | 49 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)(π / 2)) →
𝑦 ∈ (-(π /
2)[,](π / 2))) |
52 | | sinord 25690 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (-(π / 2)[,](π /
2)) ∧ 𝑦 ∈ (-(π
/ 2)[,](π / 2))) → (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦))) |
53 | 50, 51, 52 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2)))
→ (𝑥 < 𝑦 ↔ (sin‘𝑥) < (sin‘𝑦))) |
54 | 53 | biimp3a 1468 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (sin‘𝑥) < (sin‘𝑦)) |
55 | 10 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) |
56 | 55 | resincld 15852 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (sin‘𝑥) ∈
ℝ) |
57 | 27 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 < (cos‘𝑥)) |
58 | | ltdiv1 11839 |
. . . . . . . . 9
⊢
(((sin‘𝑥)
∈ ℝ ∧ (sin‘𝑦) ∈ ℝ ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 <
(cos‘𝑥))) →
((sin‘𝑥) <
(sin‘𝑦) ↔
((sin‘𝑥) /
(cos‘𝑥)) <
((sin‘𝑦) /
(cos‘𝑥)))) |
59 | 56, 37, 38, 57, 58 | syl112anc 1373 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑥) < (sin‘𝑦) ↔ ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥)))) |
60 | 54, 59 | mpbid 231 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑥))) |
61 | 12 | rexri 11033 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ* |
62 | | pirp 25618 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ+ |
63 | | rphalflt 12759 |
. . . . . . . . . . . . 13
⊢ (π
∈ ℝ+ → (π / 2) < π) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (π /
2) < π |
65 | | df-icc 13086 |
. . . . . . . . . . . . 13
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
66 | | xrlttr 12874 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ*
∧ (π / 2) ∈ ℝ* ∧ π ∈
ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π)
→ 𝑤 <
π)) |
67 | | xrltle 12883 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ*
∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π)) |
68 | 67 | 3adant2 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ*
∧ (π / 2) ∈ ℝ* ∧ π ∈
ℝ*) → (𝑤 < π → 𝑤 ≤ π)) |
69 | 66, 68 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℝ*
∧ (π / 2) ∈ ℝ* ∧ π ∈
ℝ*) → ((𝑤 < (π / 2) ∧ (π / 2) < π)
→ 𝑤 ≤
π)) |
70 | 65, 21, 69 | ixxss2 13098 |
. . . . . . . . . . . 12
⊢ ((π
∈ ℝ* ∧ (π / 2) < π) → (0[,)(π / 2))
⊆ (0[,]π)) |
71 | 61, 64, 70 | mp2an 689 |
. . . . . . . . . . 11
⊢
(0[,)(π / 2)) ⊆ (0[,]π) |
72 | 71 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,)(π / 2)) →
𝑥 ∈
(0[,]π)) |
73 | 71 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0[,)(π / 2)) →
𝑦 ∈
(0[,]π)) |
74 | | cosord 25687 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) →
(𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥))) |
75 | 72, 73, 74 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2)))
→ (𝑥 < 𝑦 ↔ (cos‘𝑦) < (cos‘𝑥))) |
76 | 75 | biimp3a 1468 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥)) |
77 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 ∈
ℝ) |
78 | | simp1 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑥 ∈ (0[,)(π / 2))) |
79 | | elico2 13143 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥 ∧ 𝑥 < (π /
2)))) |
80 | 5, 7, 79 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0[,)(π / 2)) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥 ∧ 𝑥 < (π /
2))) |
81 | 78, 80 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < (π / 2))) |
82 | 81 | simp2d 1142 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 ≤ 𝑥) |
83 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) |
84 | 77, 55, 36, 82, 83 | lelttrd 11133 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 < 𝑦) |
85 | | simp2 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑦 ∈ (0[,)(π / 2))) |
86 | | elico2 13143 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔
(𝑦 ∈ ℝ ∧ 0
≤ 𝑦 ∧ 𝑦 < (π /
2)))) |
87 | 5, 7, 86 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0[,)(π / 2)) ↔
(𝑦 ∈ ℝ ∧ 0
≤ 𝑦 ∧ 𝑦 < (π /
2))) |
88 | 85, 87 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (π / 2))) |
89 | 88 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑦 < (π / 2)) |
90 | | 0xr 11022 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ* |
91 | | elioo2 13120 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(𝑦 ∈ (0(,)(π / 2))
↔ (𝑦 ∈ ℝ
∧ 0 < 𝑦 ∧ 𝑦 < (π /
2)))) |
92 | 90, 7, 91 | mp2an 689 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0(,)(π / 2)) ↔
(𝑦 ∈ ℝ ∧ 0
< 𝑦 ∧ 𝑦 < (π /
2))) |
93 | 36, 84, 89, 92 | syl3anbrc 1342 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑦 ∈ (0(,)(π / 2))) |
94 | | sincosq1sgn 25655 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0(,)(π / 2)) →
(0 < (sin‘𝑦) ∧
0 < (cos‘𝑦))) |
95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (0 <
(sin‘𝑦) ∧ 0 <
(cos‘𝑦))) |
96 | 95 | simprd 496 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 < (cos‘𝑦)) |
97 | 95 | simpld 495 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 0 < (sin‘𝑦)) |
98 | | ltdiv2 11861 |
. . . . . . . . 9
⊢
((((cos‘𝑦)
∈ ℝ ∧ 0 < (cos‘𝑦)) ∧ ((cos‘𝑥) ∈ ℝ ∧ 0 <
(cos‘𝑥)) ∧
((sin‘𝑦) ∈
ℝ ∧ 0 < (sin‘𝑦))) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))) |
99 | 41, 96, 38, 57, 37, 97, 98 | syl222anc 1385 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((cos‘𝑦) < (cos‘𝑥) ↔ ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦)))) |
100 | 76, 99 | mpbid 231 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑦) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))) |
101 | 34, 40, 47, 60, 100 | lttrd 11136 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → ((sin‘𝑥) / (cos‘𝑥)) < ((sin‘𝑦) / (cos‘𝑦))) |
102 | 10 | recnd 11003 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,)(π / 2)) →
𝑥 ∈
ℂ) |
103 | | tanval 15837 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧
(cos‘𝑥) ≠ 0)
→ (tan‘𝑥) =
((sin‘𝑥) /
(cos‘𝑥))) |
104 | 102, 28, 103 | syl2anc 584 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)(π / 2)) →
(tan‘𝑥) =
((sin‘𝑥) /
(cos‘𝑥))) |
105 | 104 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (tan‘𝑥) = ((sin‘𝑥) / (cos‘𝑥))) |
106 | 35 | recnd 11003 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,)(π / 2)) →
𝑦 ∈
ℂ) |
107 | 106 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ) |
108 | | tanval 15837 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧
(cos‘𝑦) ≠ 0)
→ (tan‘𝑦) =
((sin‘𝑦) /
(cos‘𝑦))) |
109 | 107, 46, 108 | syl2anc 584 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (tan‘𝑦) = ((sin‘𝑦) / (cos‘𝑦))) |
110 | 101, 105,
109 | 3brtr4d 5106 |
. . . . 5
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2))
∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦)) |
111 | 110 | 3expia 1120 |
. . . 4
⊢ ((𝑥 ∈ (0[,)(π / 2)) ∧
𝑦 ∈ (0[,)(π / 2)))
→ (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦))) |
112 | 111 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦))) |
113 | 2, 3, 4, 9, 30, 112 | ltord1 11501 |
. 2
⊢
((⊤ ∧ (𝐴
∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) |
114 | 1, 113 | mpan 687 |
1
⊢ ((𝐴 ∈ (0[,)(π / 2)) ∧
𝐵 ∈ (0[,)(π / 2)))
→ (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) |