Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Structured version   Visualization version   GIF version

Theorem iccf 12846
 Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*

Proof of Theorem iccf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 12753 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21ixxf 12756 1 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
 Colors of variables: wff setvar class Syntax hints:  𝒫 cpw 4500   × cxp 5521  ⟶wf 6328  ℝ*cxr 10681   ≤ cle 10683  [,]cicc 12749 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-fv 6340  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685  df-xr 10686  df-icc 12753 This theorem is referenced by:  lecldbas  21865  ovolficc  24113  ovolficcss  24114  uniiccdif  24223  uniiccvol  24225  dyadmbllem  24244  dyadmbl  24245  opnmbllem  24246  opnmbllem0  35244  mblfinlem1  35245  mblfinlem2  35246
 Copyright terms: Public domain W3C validator