MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Structured version   Visualization version   GIF version

Theorem iccf 13470
Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*

Proof of Theorem iccf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13376 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21ixxf 13379 1 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  𝒫 cpw 4580   × cxp 5663  wf 6537  *cxr 11276  cle 11278  [,]cicc 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-xr 11281  df-icc 13376
This theorem is referenced by:  lecldbas  23173  ovolficc  25439  ovolficcss  25440  uniiccdif  25549  uniiccvol  25551  dyadmbllem  25570  dyadmbl  25571  opnmbllem  25572  opnmbllem0  37622  mblfinlem1  37623  mblfinlem2  37624
  Copyright terms: Public domain W3C validator