MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioo Structured version   Visualization version   GIF version

Theorem snunioo 12846
Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
snunioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))

Proof of Theorem snunioo
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
2 iccid 12761 . . . 4 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
31, 2syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐴[,]𝐴) = {𝐴})
43uneq1d 4114 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = ({𝐴} ∪ (𝐴(,)𝐵)))
5 simp2 1134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
61xrleidd 12523 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴𝐴)
7 simp3 1135 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
8 df-icc 12723 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
9 df-ioo 12720 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 10685 . . . 4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 df-ico 12722 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
12 xrlelttr 12527 . . . 4 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐴𝐴 < 𝐵) → 𝑤 < 𝐵))
13 xrltle 12520 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
14133adant1 1127 . . . . 5 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
1514adantld 494 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐴𝐴 < 𝑤) → 𝐴𝑤))
168, 9, 10, 11, 12, 15ixxun 12732 . . 3 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
171, 1, 5, 6, 7, 16syl32anc 1375 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
184, 17eqtr3d 2858 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  cun 3908  {csn 4540   class class class wbr 5039  (class class class)co 7130  *cxr 10651   < clt 10652  cle 10653  (,)cioo 12716  [,)cico 12718  [,]cicc 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-pre-lttri 10588  ax-pre-lttrn 10589
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-ioo 12720  df-ico 12722  df-icc 12723
This theorem is referenced by:  prunioo  12849  ioojoin  12851  icombl1  24145  ioombl  24147  tan2h  34929  mbfposadd  34984  itg2addnclem2  34989  ftc1anclem5  35014  iocunico  39958  limciccioolb  42056  fourierdlem32  42574  fourierdlem93  42634
  Copyright terms: Public domain W3C validator