|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iccss | Structured version Visualization version GIF version | ||
| Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| iccss | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexr 11308 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11308 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | 
| 4 | df-icc 13395 | . . 3 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 5 | xrletr 13201 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
| 6 | xrletr 13201 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 ≤ 𝐵)) | |
| 7 | 4, 4, 5, 6 | ixxss12 13408 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | 
| 8 | 3, 7 | sylan 580 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 ℝ*cxr 11295 ≤ cle 11297 [,]cicc 13391 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-icc 13395 | 
| This theorem is referenced by: xrhmeo 24978 lebnumii 24999 pcoval1 25047 pcoval2 25050 ivthicc 25494 dyaddisjlem 25631 volsup2 25641 volcn 25642 mbfi1fseqlem5 25755 dvcvx 26060 dvfsumle 26061 dvfsumleOLD 26062 dvfsumabs 26064 harmonicbnd3 27052 ppisval 27148 chtwordi 27200 ppiwordi 27206 chpub 27265 cvmliftlem2 35292 fourierdlem76 46202 fourierdlem103 46229 fourierdlem104 46230 fourierdlem107 46233 fourierdlem112 46238 salexct3 46362 salgensscntex 46364 icccldii 48823 sepfsepc 48832 | 
| Copyright terms: Public domain | W3C validator |