| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| Ref | Expression |
|---|---|
| icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13255 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | df-icc 13256 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | xrltle 13052 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13263 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 (class class class)co 7354 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 [,)cico 13251 [,]cicc 13252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-ico 13255 df-icc 13256 |
| This theorem is referenced by: iccpnfcnv 24872 itg2mulclem 25677 itg2mulc 25678 itg2monolem1 25681 itg2monolem2 25682 itg2monolem3 25683 itg2mono 25684 itg2i1fseq3 25688 itg2addlem 25689 itg2gt0 25691 itg2cnlem2 25693 psercnlem2 26364 eliccelico 32766 xrge0slmod 33322 xrge0iifcnv 33969 lmlimxrge0 33984 lmdvglim 33990 esumfsupre 34107 esumpfinvallem 34110 esumpfinval 34111 esumpfinvalf 34112 esumpcvgval 34114 esumpmono 34115 esummulc1 34117 sitmcl 34387 itg2addnc 37737 itg2gt0cn 37738 ftc1anclem6 37761 ftc1anclem8 37763 icoiccdif 45651 limciccioolb 45748 ltmod 45763 fourierdlem63 46294 fge0icoicc 46490 sge0tsms 46505 sge0iunmptlemre 46540 sge0isum 46552 sge0xaddlem1 46558 sge0xaddlem2 46559 sge0pnffsumgt 46567 sge0gtfsumgt 46568 sge0seq 46571 ovnsupge0 46682 ovnlecvr 46683 ovnsubaddlem1 46695 sge0hsphoire 46714 hoidmv1lelem3 46718 hoidmv1le 46719 hoidmvlelem1 46720 hoidmvlelem2 46721 hoidmvlelem3 46722 hoidmvlelem4 46723 hoidmvlelem5 46724 hoidmvle 46725 ovnhoilem1 46726 ovnlecvr2 46735 hspmbllem2 46752 sepfsepc 49055 |
| Copyright terms: Public domain | W3C validator |