Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
Ref | Expression |
---|---|
icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13085 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | df-icc 13086 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | xrltle 12883 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 13093 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-icc 13086 |
This theorem is referenced by: iccpnfcnv 24107 itg2mulclem 24911 itg2mulc 24912 itg2monolem1 24915 itg2monolem2 24916 itg2monolem3 24917 itg2mono 24918 itg2i1fseq3 24922 itg2addlem 24923 itg2gt0 24925 itg2cnlem2 24927 psercnlem2 25583 eliccelico 31098 xrge0slmod 31548 xrge0iifcnv 31883 lmlimxrge0 31898 lmdvglim 31904 esumfsupre 32039 esumpfinvallem 32042 esumpfinval 32043 esumpfinvalf 32044 esumpcvgval 32046 esumpmono 32047 esummulc1 32049 sitmcl 32318 itg2addnc 35831 itg2gt0cn 35832 ftc1anclem6 35855 ftc1anclem8 35857 icoiccdif 43062 limciccioolb 43162 ltmod 43179 fourierdlem63 43710 fge0icoicc 43903 sge0tsms 43918 sge0iunmptlemre 43953 sge0isum 43965 sge0xaddlem1 43971 sge0xaddlem2 43972 sge0pnffsumgt 43980 sge0gtfsumgt 43981 sge0seq 43984 ovnsupge0 44095 ovnlecvr 44096 ovnsubaddlem1 44108 sge0hsphoire 44127 hoidmv1lelem3 44131 hoidmv1le 44132 hoidmvlelem1 44133 hoidmvlelem2 44134 hoidmvlelem3 44135 hoidmvlelem4 44136 hoidmvlelem5 44137 hoidmvle 44138 ovnhoilem1 44139 ovnlecvr2 44148 hspmbllem2 44165 sepfsepc 46221 |
Copyright terms: Public domain | W3C validator |