| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| Ref | Expression |
|---|---|
| icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13312 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | df-icc 13313 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | xrltle 13109 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13320 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 (class class class)co 7387 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 [,)cico 13308 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-icc 13313 |
| This theorem is referenced by: iccpnfcnv 24842 itg2mulclem 25647 itg2mulc 25648 itg2monolem1 25651 itg2monolem2 25652 itg2monolem3 25653 itg2mono 25654 itg2i1fseq3 25658 itg2addlem 25659 itg2gt0 25661 itg2cnlem2 25663 psercnlem2 26334 eliccelico 32700 xrge0slmod 33319 xrge0iifcnv 33923 lmlimxrge0 33938 lmdvglim 33944 esumfsupre 34061 esumpfinvallem 34064 esumpfinval 34065 esumpfinvalf 34066 esumpcvgval 34068 esumpmono 34069 esummulc1 34071 sitmcl 34342 itg2addnc 37668 itg2gt0cn 37669 ftc1anclem6 37692 ftc1anclem8 37694 icoiccdif 45522 limciccioolb 45619 ltmod 45636 fourierdlem63 46167 fge0icoicc 46363 sge0tsms 46378 sge0iunmptlemre 46413 sge0isum 46425 sge0xaddlem1 46431 sge0xaddlem2 46432 sge0pnffsumgt 46440 sge0gtfsumgt 46441 sge0seq 46444 ovnsupge0 46555 ovnlecvr 46556 ovnsubaddlem1 46568 sge0hsphoire 46587 hoidmv1lelem3 46591 hoidmv1le 46592 hoidmvlelem1 46593 hoidmvlelem2 46594 hoidmvlelem3 46595 hoidmvlelem4 46596 hoidmvlelem5 46597 hoidmvle 46598 ovnhoilem1 46599 ovnlecvr2 46608 hspmbllem2 46625 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |