| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| Ref | Expression |
|---|---|
| icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13319 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | df-icc 13320 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | xrltle 13116 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13327 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 (class class class)co 7390 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ico 13319 df-icc 13320 |
| This theorem is referenced by: iccpnfcnv 24849 itg2mulclem 25654 itg2mulc 25655 itg2monolem1 25658 itg2monolem2 25659 itg2monolem3 25660 itg2mono 25661 itg2i1fseq3 25665 itg2addlem 25666 itg2gt0 25668 itg2cnlem2 25670 psercnlem2 26341 eliccelico 32707 xrge0slmod 33326 xrge0iifcnv 33930 lmlimxrge0 33945 lmdvglim 33951 esumfsupre 34068 esumpfinvallem 34071 esumpfinval 34072 esumpfinvalf 34073 esumpcvgval 34075 esumpmono 34076 esummulc1 34078 sitmcl 34349 itg2addnc 37675 itg2gt0cn 37676 ftc1anclem6 37699 ftc1anclem8 37701 icoiccdif 45529 limciccioolb 45626 ltmod 45643 fourierdlem63 46174 fge0icoicc 46370 sge0tsms 46385 sge0iunmptlemre 46420 sge0isum 46432 sge0xaddlem1 46438 sge0xaddlem2 46439 sge0pnffsumgt 46447 sge0gtfsumgt 46448 sge0seq 46451 ovnsupge0 46562 ovnlecvr 46563 ovnsubaddlem1 46575 sge0hsphoire 46594 hoidmv1lelem3 46598 hoidmv1le 46599 hoidmvlelem1 46600 hoidmvlelem2 46601 hoidmvlelem3 46602 hoidmvlelem4 46603 hoidmvlelem5 46604 hoidmvle 46605 ovnhoilem1 46606 ovnlecvr2 46615 hspmbllem2 46632 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |