| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| Ref | Expression |
|---|---|
| icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13272 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | df-icc 13273 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | xrltle 13069 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13280 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,)cico 13268 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ico 13272 df-icc 13273 |
| This theorem is referenced by: iccpnfcnv 24858 itg2mulclem 25663 itg2mulc 25664 itg2monolem1 25667 itg2monolem2 25668 itg2monolem3 25669 itg2mono 25670 itg2i1fseq3 25674 itg2addlem 25675 itg2gt0 25677 itg2cnlem2 25679 psercnlem2 26350 eliccelico 32733 xrge0slmod 33298 xrge0iifcnv 33902 lmlimxrge0 33917 lmdvglim 33923 esumfsupre 34040 esumpfinvallem 34043 esumpfinval 34044 esumpfinvalf 34045 esumpcvgval 34047 esumpmono 34048 esummulc1 34050 sitmcl 34321 itg2addnc 37656 itg2gt0cn 37657 ftc1anclem6 37680 ftc1anclem8 37682 icoiccdif 45509 limciccioolb 45606 ltmod 45623 fourierdlem63 46154 fge0icoicc 46350 sge0tsms 46365 sge0iunmptlemre 46400 sge0isum 46412 sge0xaddlem1 46418 sge0xaddlem2 46419 sge0pnffsumgt 46427 sge0gtfsumgt 46428 sge0seq 46431 ovnsupge0 46542 ovnlecvr 46543 ovnsubaddlem1 46555 sge0hsphoire 46574 hoidmv1lelem3 46578 hoidmv1le 46579 hoidmvlelem1 46580 hoidmvlelem2 46581 hoidmvlelem3 46582 hoidmvlelem4 46583 hoidmvlelem5 46584 hoidmvle 46585 ovnhoilem1 46586 ovnlecvr2 46595 hspmbllem2 46612 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |