MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossicc Structured version   Visualization version   GIF version

Theorem icossicc 13357
Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.)
Assertion
Ref Expression
icossicc (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)

Proof of Theorem icossicc
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13272 . 2 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥 < 𝑏)})
2 df-icc 13273 . 2 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥𝑏)})
3 idd 24 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤𝐴𝑤))
4 xrltle 13069 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 13280 1 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wss 3905   class class class wbr 5095  (class class class)co 7353  *cxr 11167   < clt 11168  cle 11169  [,)cico 13268  [,]cicc 13269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ico 13272  df-icc 13273
This theorem is referenced by:  iccpnfcnv  24858  itg2mulclem  25663  itg2mulc  25664  itg2monolem1  25667  itg2monolem2  25668  itg2monolem3  25669  itg2mono  25670  itg2i1fseq3  25674  itg2addlem  25675  itg2gt0  25677  itg2cnlem2  25679  psercnlem2  26350  eliccelico  32733  xrge0slmod  33298  xrge0iifcnv  33902  lmlimxrge0  33917  lmdvglim  33923  esumfsupre  34040  esumpfinvallem  34043  esumpfinval  34044  esumpfinvalf  34045  esumpcvgval  34047  esumpmono  34048  esummulc1  34050  sitmcl  34321  itg2addnc  37656  itg2gt0cn  37657  ftc1anclem6  37680  ftc1anclem8  37682  icoiccdif  45509  limciccioolb  45606  ltmod  45623  fourierdlem63  46154  fge0icoicc  46350  sge0tsms  46365  sge0iunmptlemre  46400  sge0isum  46412  sge0xaddlem1  46418  sge0xaddlem2  46419  sge0pnffsumgt  46427  sge0gtfsumgt  46428  sge0seq  46431  ovnsupge0  46542  ovnlecvr  46543  ovnsubaddlem1  46555  sge0hsphoire  46574  hoidmv1lelem3  46578  hoidmv1le  46579  hoidmvlelem1  46580  hoidmvlelem2  46581  hoidmvlelem3  46582  hoidmvlelem4  46583  hoidmvlelem5  46584  hoidmvle  46585  ovnhoilem1  46586  ovnlecvr2  46595  hspmbllem2  46612  sepfsepc  48916
  Copyright terms: Public domain W3C validator