| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| Ref | Expression |
|---|---|
| icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13251 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
| 2 | df-icc 13252 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | xrltle 13048 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13259 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 (class class class)co 7346 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,)cico 13247 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 df-icc 13252 |
| This theorem is referenced by: iccpnfcnv 24870 itg2mulclem 25675 itg2mulc 25676 itg2monolem1 25679 itg2monolem2 25680 itg2monolem3 25681 itg2mono 25682 itg2i1fseq3 25686 itg2addlem 25687 itg2gt0 25689 itg2cnlem2 25691 psercnlem2 26362 eliccelico 32758 xrge0slmod 33311 xrge0iifcnv 33944 lmlimxrge0 33959 lmdvglim 33965 esumfsupre 34082 esumpfinvallem 34085 esumpfinval 34086 esumpfinvalf 34087 esumpcvgval 34089 esumpmono 34090 esummulc1 34092 sitmcl 34362 itg2addnc 37720 itg2gt0cn 37721 ftc1anclem6 37744 ftc1anclem8 37746 icoiccdif 45570 limciccioolb 45667 ltmod 45682 fourierdlem63 46213 fge0icoicc 46409 sge0tsms 46424 sge0iunmptlemre 46459 sge0isum 46471 sge0xaddlem1 46477 sge0xaddlem2 46478 sge0pnffsumgt 46486 sge0gtfsumgt 46487 sge0seq 46490 ovnsupge0 46601 ovnlecvr 46602 ovnsubaddlem1 46614 sge0hsphoire 46633 hoidmv1lelem3 46637 hoidmv1le 46638 hoidmvlelem1 46639 hoidmvlelem2 46640 hoidmvlelem3 46641 hoidmvlelem4 46642 hoidmvlelem5 46643 hoidmvle 46644 ovnhoilem1 46645 ovnlecvr2 46654 hspmbllem2 46671 sepfsepc 48965 |
| Copyright terms: Public domain | W3C validator |