Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
Ref | Expression |
---|---|
icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13014 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | df-icc 13015 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | xrltle 12812 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 13022 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,)cico 13010 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-icc 13015 |
This theorem is referenced by: iccpnfcnv 24013 itg2mulclem 24816 itg2mulc 24817 itg2monolem1 24820 itg2monolem2 24821 itg2monolem3 24822 itg2mono 24823 itg2i1fseq3 24827 itg2addlem 24828 itg2gt0 24830 itg2cnlem2 24832 psercnlem2 25488 eliccelico 31000 xrge0slmod 31450 xrge0iifcnv 31785 lmlimxrge0 31800 lmdvglim 31806 esumfsupre 31939 esumpfinvallem 31942 esumpfinval 31943 esumpfinvalf 31944 esumpcvgval 31946 esumpmono 31947 esummulc1 31949 sitmcl 32218 itg2addnc 35758 itg2gt0cn 35759 ftc1anclem6 35782 ftc1anclem8 35784 icoiccdif 42952 limciccioolb 43052 ltmod 43069 fourierdlem63 43600 fge0icoicc 43793 sge0tsms 43808 sge0iunmptlemre 43843 sge0isum 43855 sge0xaddlem1 43861 sge0xaddlem2 43862 sge0pnffsumgt 43870 sge0gtfsumgt 43871 sge0seq 43874 ovnsupge0 43985 ovnlecvr 43986 ovnsubaddlem1 43998 sge0hsphoire 44017 hoidmv1lelem3 44021 hoidmv1le 44022 hoidmvlelem1 44023 hoidmvlelem2 44024 hoidmvlelem3 44025 hoidmvlelem4 44026 hoidmvlelem5 44027 hoidmvle 44028 ovnhoilem1 44029 ovnlecvr2 44038 hspmbllem2 44055 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |