![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossicc | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
Ref | Expression |
---|---|
icossicc | ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13413 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | df-icc 13414 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
3 | idd 24 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | xrltle 13211 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 13421 | 1 ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 df-icc 13414 |
This theorem is referenced by: iccpnfcnv 24994 itg2mulclem 25801 itg2mulc 25802 itg2monolem1 25805 itg2monolem2 25806 itg2monolem3 25807 itg2mono 25808 itg2i1fseq3 25812 itg2addlem 25813 itg2gt0 25815 itg2cnlem2 25817 psercnlem2 26486 eliccelico 32782 xrge0slmod 33341 xrge0iifcnv 33879 lmlimxrge0 33894 lmdvglim 33900 esumfsupre 34035 esumpfinvallem 34038 esumpfinval 34039 esumpfinvalf 34040 esumpcvgval 34042 esumpmono 34043 esummulc1 34045 sitmcl 34316 itg2addnc 37634 itg2gt0cn 37635 ftc1anclem6 37658 ftc1anclem8 37660 icoiccdif 45442 limciccioolb 45542 ltmod 45559 fourierdlem63 46090 fge0icoicc 46286 sge0tsms 46301 sge0iunmptlemre 46336 sge0isum 46348 sge0xaddlem1 46354 sge0xaddlem2 46355 sge0pnffsumgt 46363 sge0gtfsumgt 46364 sge0seq 46367 ovnsupge0 46478 ovnlecvr 46479 ovnsubaddlem1 46491 sge0hsphoire 46510 hoidmv1lelem3 46514 hoidmv1le 46515 hoidmvlelem1 46516 hoidmvlelem2 46517 hoidmvlelem3 46518 hoidmvlelem4 46519 hoidmvlelem5 46520 hoidmvle 46521 ovnhoilem1 46522 ovnlecvr2 46531 hspmbllem2 46548 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |