| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccordt | Structured version Visualization version GIF version | ||
| Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| iccordt | ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐴[,]𝐵) = ([,]‘〈𝐴, 𝐵〉) | |
| 2 | letsr 18552 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
| 3 | ledm 18549 | . . . . . . 7 ⊢ ℝ* = dom ≤ | |
| 4 | 3 | ordtcld3 23086 | . . . . . 6 ⊢ (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
| 5 | 2, 4 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
| 6 | 5 | rgen2 3177 | . . . 4 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) |
| 7 | df-icc 13313 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 8 | 7 | fmpo 8047 | . . . 4 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))) |
| 9 | 6, 8 | mpbi 230 | . . 3 ⊢ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )) |
| 10 | letop 23093 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
| 11 | 0cld 22925 | . . . 4 ⊢ ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ ))) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ ∅ ∈ (Clsd‘(ordTop‘ ≤ )) |
| 13 | 9, 12 | f0cli 7070 | . 2 ⊢ ([,]‘〈𝐴, 𝐵〉) ∈ (Clsd‘(ordTop‘ ≤ )) |
| 14 | 1, 13 | eqeltri 2824 | 1 ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∅c0 4296 〈cop 4595 class class class wbr 5107 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 ordTopcordt 17462 TosetRel ctsr 18524 Topctop 22780 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 df-topgen 17406 df-ordt 17464 df-ps 18525 df-tsr 18526 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 |
| This theorem is referenced by: lecldbas 23106 icccldii 48904 |
| Copyright terms: Public domain | W3C validator |