MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccordt Structured version   Visualization version   GIF version

Theorem iccordt 22273
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iccordt (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))

Proof of Theorem iccordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7258 . 2 (𝐴[,]𝐵) = ([,]‘⟨𝐴, 𝐵⟩)
2 letsr 18226 . . . . . 6 ≤ ∈ TosetRel
3 ledm 18223 . . . . . . 7 * = dom ≤
43ordtcld3 22258 . . . . . 6 (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
52, 4mp3an1 1446 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
65rgen2 3126 . . . 4 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))
7 df-icc 13015 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
87fmpo 7881 . . . 4 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )))
96, 8mpbi 229 . . 3 [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))
10 letop 22265 . . . 4 (ordTop‘ ≤ ) ∈ Top
11 0cld 22097 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ )))
1210, 11ax-mp 5 . . 3 ∅ ∈ (Clsd‘(ordTop‘ ≤ ))
139, 12f0cli 6956 . 2 ([,]‘⟨𝐴, 𝐵⟩) ∈ (Clsd‘(ordTop‘ ≤ ))
141, 13eqeltri 2835 1 (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wral 3063  {crab 3067  c0 4253  cop 4564   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  *cxr 10939  cle 10941  [,]cicc 13011  ordTopcordt 17127   TosetRel ctsr 18198  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078
This theorem is referenced by:  lecldbas  22278  icccldii  46100
  Copyright terms: Public domain W3C validator