MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccordt Structured version   Visualization version   GIF version

Theorem iccordt 23134
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iccordt (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))

Proof of Theorem iccordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7372 . 2 (𝐴[,]𝐵) = ([,]‘⟨𝐴, 𝐵⟩)
2 letsr 18534 . . . . . 6 ≤ ∈ TosetRel
3 ledm 18531 . . . . . . 7 * = dom ≤
43ordtcld3 23119 . . . . . 6 (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
52, 4mp3an1 1450 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
65rgen2 3175 . . . 4 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))
7 df-icc 13289 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
87fmpo 8026 . . . 4 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )))
96, 8mpbi 230 . . 3 [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))
10 letop 23126 . . . 4 (ordTop‘ ≤ ) ∈ Top
11 0cld 22958 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ )))
1210, 11ax-mp 5 . . 3 ∅ ∈ (Clsd‘(ordTop‘ ≤ ))
139, 12f0cli 7052 . 2 ([,]‘⟨𝐴, 𝐵⟩) ∈ (Clsd‘(ordTop‘ ≤ ))
141, 13eqeltri 2824 1 (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wral 3044  {crab 3402  c0 4292  cop 4591   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  *cxr 11183  cle 11185  [,]cicc 13285  ordTopcordt 17438   TosetRel ctsr 18506  Topctop 22813  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-icc 13289  df-topgen 17382  df-ordt 17440  df-ps 18507  df-tsr 18508  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939
This theorem is referenced by:  lecldbas  23139  icccldii  48900
  Copyright terms: Public domain W3C validator