| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccordt | Structured version Visualization version GIF version | ||
| Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| iccordt | ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝐴[,]𝐵) = ([,]‘〈𝐴, 𝐵〉) | |
| 2 | letsr 18499 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
| 3 | ledm 18496 | . . . . . . 7 ⊢ ℝ* = dom ≤ | |
| 4 | 3 | ordtcld3 23114 | . . . . . 6 ⊢ (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
| 5 | 2, 4 | mp3an1 1450 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
| 6 | 5 | rgen2 3172 | . . . 4 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) |
| 7 | df-icc 13252 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 8 | 7 | fmpo 8000 | . . . 4 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))) |
| 9 | 6, 8 | mpbi 230 | . . 3 ⊢ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )) |
| 10 | letop 23121 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
| 11 | 0cld 22953 | . . . 4 ⊢ ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ ))) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ ∅ ∈ (Clsd‘(ordTop‘ ≤ )) |
| 13 | 9, 12 | f0cli 7031 | . 2 ⊢ ([,]‘〈𝐴, 𝐵〉) ∈ (Clsd‘(ordTop‘ ≤ )) |
| 14 | 1, 13 | eqeltri 2827 | 1 ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∅c0 4280 〈cop 4579 class class class wbr 5089 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ≤ cle 11147 [,]cicc 13248 ordTopcordt 17403 TosetRel ctsr 18471 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 df-topgen 17347 df-ordt 17405 df-ps 18472 df-tsr 18473 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 |
| This theorem is referenced by: lecldbas 23134 icccldii 49018 |
| Copyright terms: Public domain | W3C validator |