Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iccordt | Structured version Visualization version GIF version |
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iccordt | ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7278 | . 2 ⊢ (𝐴[,]𝐵) = ([,]‘〈𝐴, 𝐵〉) | |
2 | letsr 18311 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
3 | ledm 18308 | . . . . . . 7 ⊢ ℝ* = dom ≤ | |
4 | 3 | ordtcld3 22350 | . . . . . 6 ⊢ (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
5 | 2, 4 | mp3an1 1447 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
6 | 5 | rgen2 3120 | . . . 4 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) |
7 | df-icc 13086 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
8 | 7 | fmpo 7908 | . . . 4 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))) |
9 | 6, 8 | mpbi 229 | . . 3 ⊢ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )) |
10 | letop 22357 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
11 | 0cld 22189 | . . . 4 ⊢ ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ ))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ ∅ ∈ (Clsd‘(ordTop‘ ≤ )) |
13 | 9, 12 | f0cli 6974 | . 2 ⊢ ([,]‘〈𝐴, 𝐵〉) ∈ (Clsd‘(ordTop‘ ≤ )) |
14 | 1, 13 | eqeltri 2835 | 1 ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∅c0 4256 〈cop 4567 class class class wbr 5074 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 ordTopcordt 17210 TosetRel ctsr 18283 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 df-topgen 17154 df-ordt 17212 df-ps 18284 df-tsr 18285 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 |
This theorem is referenced by: lecldbas 22370 icccldii 46212 |
Copyright terms: Public domain | W3C validator |