![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccordt | Structured version Visualization version GIF version |
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iccordt | β’ (π΄[,]π΅) β (Clsdβ(ordTopβ β€ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7415 | . 2 β’ (π΄[,]π΅) = ([,]ββ¨π΄, π΅β©) | |
2 | letsr 18551 | . . . . . 6 β’ β€ β TosetRel | |
3 | ledm 18548 | . . . . . . 7 β’ β* = dom β€ | |
4 | 3 | ordtcld3 22924 | . . . . . 6 β’ (( β€ β TosetRel β§ π₯ β β* β§ π¦ β β*) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β (Clsdβ(ordTopβ β€ ))) |
5 | 2, 4 | mp3an1 1447 | . . . . 5 β’ ((π₯ β β* β§ π¦ β β*) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β (Clsdβ(ordTopβ β€ ))) |
6 | 5 | rgen2 3196 | . . . 4 β’ βπ₯ β β* βπ¦ β β* {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β (Clsdβ(ordTopβ β€ )) |
7 | df-icc 13336 | . . . . 5 β’ [,] = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) | |
8 | 7 | fmpo 8057 | . . . 4 β’ (βπ₯ β β* βπ¦ β β* {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β (Clsdβ(ordTopβ β€ )) β [,]:(β* Γ β*)βΆ(Clsdβ(ordTopβ β€ ))) |
9 | 6, 8 | mpbi 229 | . . 3 β’ [,]:(β* Γ β*)βΆ(Clsdβ(ordTopβ β€ )) |
10 | letop 22931 | . . . 4 β’ (ordTopβ β€ ) β Top | |
11 | 0cld 22763 | . . . 4 β’ ((ordTopβ β€ ) β Top β β β (Clsdβ(ordTopβ β€ ))) | |
12 | 10, 11 | ax-mp 5 | . . 3 β’ β β (Clsdβ(ordTopβ β€ )) |
13 | 9, 12 | f0cli 7099 | . 2 β’ ([,]ββ¨π΄, π΅β©) β (Clsdβ(ordTopβ β€ )) |
14 | 1, 13 | eqeltri 2828 | 1 β’ (π΄[,]π΅) β (Clsdβ(ordTopβ β€ )) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 β wcel 2105 βwral 3060 {crab 3431 β c0 4322 β¨cop 4634 class class class wbr 5148 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7412 β*cxr 11252 β€ cle 11254 [,]cicc 13332 ordTopcordt 17450 TosetRel ctsr 18523 Topctop 22616 Clsdccld 22741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-icc 13336 df-topgen 17394 df-ordt 17452 df-ps 18524 df-tsr 18525 df-top 22617 df-topon 22634 df-bases 22670 df-cld 22744 |
This theorem is referenced by: lecldbas 22944 icccldii 47639 |
Copyright terms: Public domain | W3C validator |