MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccordt Structured version   Visualization version   GIF version

Theorem iccordt 21819
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iccordt (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))

Proof of Theorem iccordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7138 . 2 (𝐴[,]𝐵) = ([,]‘⟨𝐴, 𝐵⟩)
2 letsr 17829 . . . . . 6 ≤ ∈ TosetRel
3 ledm 17826 . . . . . . 7 * = dom ≤
43ordtcld3 21804 . . . . . 6 (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
52, 4mp3an1 1445 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )))
65rgen2 3168 . . . 4 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))
7 df-icc 12733 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
87fmpo 7748 . . . 4 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )))
96, 8mpbi 233 . . 3 [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))
10 letop 21811 . . . 4 (ordTop‘ ≤ ) ∈ Top
11 0cld 21643 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ )))
1210, 11ax-mp 5 . . 3 ∅ ∈ (Clsd‘(ordTop‘ ≤ ))
139, 12f0cli 6841 . 2 ([,]‘⟨𝐴, 𝐵⟩) ∈ (Clsd‘(ordTop‘ ≤ ))
141, 13eqeltri 2886 1 (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2111  wral 3106  {crab 3110  c0 4243  cop 4531   class class class wbr 5030   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  *cxr 10663  cle 10665  [,]cicc 12729  ordTopcordt 16764   TosetRel ctsr 17801  Topctop 21498  Clsdccld 21621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12733  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624
This theorem is referenced by:  lecldbas  21824
  Copyright terms: Public domain W3C validator