MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccssioo Structured version   Visualization version   GIF version

Theorem iccssioo 12784
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssioo (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))

Proof of Theorem iccssioo
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12720 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 df-icc 12723 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
3 xrltletr 12528 . 2 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴 < 𝐶𝐶𝑤) → 𝐴 < 𝑤))
4 xrlelttr 12527 . 2 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐷𝐷 < 𝐵) → 𝑤 < 𝐵))
51, 2, 3, 4ixxss12 12736 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wss 3910   class class class wbr 5039  (class class class)co 7130  *cxr 10651   < clt 10652  cle 10653  (,)cioo 12716  [,]cicc 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-pre-lttri 10588  ax-pre-lttrn 10589
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-ioo 12720  df-icc 12723
This theorem is referenced by:  iccssioo2  12788  opnreen  23414  lebnumii  23549  opnmbllem  24183  lhop1lem  24594  dvfsumlem2  24608  itgsubstlem  24629  logccv  25232  fct2relem  31875  opnmbllem0  34973  iooiinicc  41972  dvbdfbdioolem1  42363
  Copyright terms: Public domain W3C validator