MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioodisj Structured version   Visualization version   GIF version

Theorem ioodisj 13214
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)

Proof of Theorem ioodisj
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooss1 13114 . . . . . 6 ((𝐵 ∈ ℝ*𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
21ad4ant24 751 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
3 ioossicc 13165 . . . . 5 (𝐵(,)𝐷) ⊆ (𝐵[,]𝐷)
42, 3sstrdi 3933 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵[,]𝐷))
5 sslin 4168 . . . 4 ((𝐶(,)𝐷) ⊆ (𝐵[,]𝐷) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
64, 5syl 17 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
7 simplll 772 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐴 ∈ ℝ*)
8 simpllr 773 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐵 ∈ ℝ*)
9 simplrr 775 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐷 ∈ ℝ*)
10 df-ioo 13083 . . . . 5 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
11 df-icc 13086 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
12 xrlenlt 11040 . . . . 5 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
1310, 11, 12ixxdisj 13094 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
147, 8, 9, 13syl3anc 1370 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
156, 14sseqtrd 3961 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅)
16 ss0 4332 . 2 (((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅ → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
1715, 16syl 17 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  c0 4256   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-icc 13086
This theorem is referenced by:  reconnlem1  23989  dyaddisjlem  24759  itgsplitioo  25002
  Copyright terms: Public domain W3C validator