Proof of Theorem ftc1anclem7
Step | Hyp | Ref
| Expression |
1 | | i1ff 24840 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
2 | 1 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑓‘𝑥) ∈
ℝ) |
3 | 2 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑓‘𝑥) ∈
ℂ) |
4 | | ax-icn 10930 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
5 | | i1ff 24840 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
6 | 5 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℝ) |
7 | 6 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℂ) |
8 | | mulcl 10955 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑥) ∈ ℂ) → (i · (𝑔‘𝑥)) ∈ ℂ) |
9 | 4, 7, 8 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (i · (𝑔‘𝑥)) ∈ ℂ) |
10 | | addcl 10953 |
. . . . . . . . 9
⊢ (((𝑓‘𝑥) ∈ ℂ ∧ (i · (𝑔‘𝑥)) ∈ ℂ) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
11 | 3, 9, 10 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
12 | 11 | anandirs 676 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
13 | | reex 10962 |
. . . . . . . . 9
⊢ ℝ
∈ V |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ∈ V) |
15 | 2 | adantlr 712 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) |
16 | | ovexd 7310 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (i · (𝑔‘𝑥)) ∈ V) |
17 | 1 | feqmptd 6837 |
. . . . . . . . 9
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓‘𝑥))) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
= (𝑥 ∈ ℝ ↦
(𝑓‘𝑥))) |
19 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) |
20 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ i ∈ ℂ) |
21 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ (ℝ
× {i}) = (𝑥 ∈
ℝ ↦ i) |
22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)) |
23 | 5 | feqmptd 6837 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔‘𝑥))) |
24 | 19, 20, 6, 22, 23 | offval2 7553 |
. . . . . . . . 9
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · 𝑔) = (𝑥 ∈ ℝ ↦ (i · (𝑔‘𝑥)))) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {i}) ∘f ·
𝑔) = (𝑥 ∈ ℝ ↦ (i · (𝑔‘𝑥)))) |
26 | 14, 15, 16, 18, 25 | offval2 7553 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔)) = (𝑥 ∈ ℝ ↦ ((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
27 | | absf 15049 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
29 | 28 | feqmptd 6837 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs = (𝑡 ∈ ℂ ↦ (abs‘𝑡))) |
30 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) → (abs‘𝑡) = (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
31 | 12, 26, 29, 30 | fmptco 7001 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))) |
32 | | ftc1anclem3 35852 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ∈ dom
∫1) |
33 | 31, 32 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) ∈ dom
∫1) |
34 | | ioombl 24729 |
. . . . 5
⊢ (𝑢(,)𝑤) ∈ dom vol |
35 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑓‘𝑥) = (𝑓‘𝑡)) |
36 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (𝑔‘𝑥) = (𝑔‘𝑡)) |
37 | 36 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (i · (𝑔‘𝑥)) = (i · (𝑔‘𝑡))) |
38 | 35, 37 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) = ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) |
39 | 38 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
40 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
41 | | fvex 6787 |
. . . . . . . . . 10
⊢
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ V |
42 | 39, 40, 41 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
43 | 42 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ →
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡)) |
44 | 43 | ifeq1d 4478 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡), 0)) |
45 | 44 | mpteq2ia 5177 |
. . . . . 6
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡), 0)) |
46 | 45 | i1fres 24870 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) ∈ dom ∫1 ∧
(𝑢(,)𝑤) ∈ dom vol) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom
∫1) |
47 | 33, 34, 46 | sylancl 586 |
. . . 4
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom
∫1) |
48 | | breq2 5078 |
. . . . . . 7
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
49 | | breq2 5078 |
. . . . . . 7
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
50 | | elioore 13109 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ) |
51 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ)) |
52 | 51 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑥 ∈ ℝ)
↔ ((𝑓 ∈ dom
∫1 ∧ 𝑔
∈ dom ∫1) ∧ 𝑡 ∈ ℝ))) |
53 | 38 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ ↔ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ)) |
54 | 52, 53 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑥 ∈ ℝ)
→ ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) ↔ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ))) |
55 | 54, 12 | chvarvv 2002 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
56 | 55 | absge0d 15156 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
57 | 50, 56 | sylan2 593 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
58 | | 0le0 12074 |
. . . . . . . 8
⊢ 0 ≤
0 |
59 | 58 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ 0) |
60 | 48, 49, 57, 59 | ifbothda 4497 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
61 | 60 | ralrimivw 3104 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
62 | | ax-resscn 10928 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
63 | 62 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ⊆ ℂ) |
64 | | c0ex 10969 |
. . . . . . . . . 10
⊢ 0 ∈
V |
65 | 41, 64 | ifex 4509 |
. . . . . . . . 9
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
66 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
67 | 65, 66 | fnmpti 6576 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) Fn ℝ |
68 | 67 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) Fn ℝ) |
69 | 63, 68 | 0pledm 24837 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (0𝑝 ∘r ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ (ℝ × {0})
∘r ≤ (𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
70 | 64 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ∈ V) |
71 | 65 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
72 | | fconstmpt 5649 |
. . . . . . . 8
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) |
73 | 72 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) |
74 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
75 | 14, 70, 71, 73, 74 | ofrfval2 7554 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {0}) ∘r ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
76 | 69, 75 | bitrd 278 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (0𝑝 ∘r ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
77 | 61, 76 | mpbird 256 |
. . . 4
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
78 | | itg2itg1 24901 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
79 | | itg1cl 24849 |
. . . . . 6
⊢ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
80 | 79 | adantr 481 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫1‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
81 | 78, 80 | eqeltrd 2839 |
. . . 4
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
82 | 47, 77, 81 | syl2anc 584 |
. . 3
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
83 | 82 | ad6antlr 734 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
84 | | simplll 772 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
85 | | ftc1anc.a |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
86 | 85 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
87 | | ftc1anc.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℝ) |
88 | 87 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
89 | 86, 88 | jca 512 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
90 | | df-icc 13086 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦)}) |
91 | 90 | elixx3g 13092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑢 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵))) |
92 | 91 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵)) |
93 | 92 | simpld 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴[,]𝐵) → 𝐴 ≤ 𝑢) |
94 | 90 | elixx3g 13092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵))) |
95 | 94 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵)) |
96 | 95 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ≤ 𝐵) |
97 | 93, 96 | anim12i 613 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) |
98 | | ioossioo 13173 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
99 | 89, 97, 98 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
100 | | ftc1anc.s |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷) |
102 | 99, 101 | sstrd 3931 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷) |
103 | 102 | 3adantr3 1170 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑢(,)𝑤) ⊆ 𝐷) |
104 | 103 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
105 | | ftc1anc.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
106 | 105 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
107 | 106 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
108 | 104, 107 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
109 | 108 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
110 | 55 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
111 | 50, 110 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
112 | 111 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
113 | 109, 112 | subcld 11332 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
114 | 113 | abscld 15148 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
115 | 114 | rexrd 11025 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
116 | 113 | absge0d 15156 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
117 | | elxrge0 13189 |
. . . . . . . . 9
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
118 | 115, 116,
117 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
119 | | 0e0iccpnf 13191 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) |
120 | 119 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
121 | 118, 120 | ifclda 4494 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
122 | 121 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
123 | 122 | fmpttd 6989 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
124 | 84, 123 | sylan 580 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
125 | | rpre 12738 |
. . . . . 6
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
126 | 125 | rehalfcld 12220 |
. . . . 5
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ) |
127 | 126 | ad2antlr 724 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑦 / 2) ∈ ℝ) |
128 | | simpll 764 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
129 | 102 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
130 | 129 | adantllr 716 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
131 | 106 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
132 | | ftc1anc.d |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
133 | 132 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
134 | 133 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
135 | 134, 110 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
136 | 131, 135 | subcld 11332 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
137 | 136 | abscld 15148 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
138 | 137 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
139 | 138 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
140 | 130, 139 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
141 | 136 | absge0d 15156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
142 | 141 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
143 | 130, 142 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
144 | 140, 143,
117 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
145 | 119 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
146 | 144, 145 | ifclda 4494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
147 | 146 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
148 | 147 | fmpttd 6989 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
149 | | itg2cl 24897 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
150 | 148, 149 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
151 | 128, 150 | sylan 580 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
152 | | rphalfcl 12757 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ+) |
153 | 152 | rpxrd 12773 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ*) |
154 | 153 | ad2antlr 724 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑦 / 2) ∈
ℝ*) |
155 | | 0cnd 10968 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
156 | 106, 155 | ifclda 4494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
157 | | subcl 11220 |
. . . . . . . . . . . . . . . 16
⊢
((if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ ∧ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) → (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
158 | 156, 55, 157 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
159 | 158 | anassrs 468 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
160 | 159 | abscld 15148 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
161 | 160 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
162 | 159 | absge0d 15156 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
163 | | elxrge0 13189 |
. . . . . . . . . . . 12
⊢
((abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
164 | 161, 162,
163 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
165 | 164 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
166 | | itg2cl 24897 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
167 | 165, 166 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
168 | 167 | ad3antrrr 727 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
169 | 165 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
170 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
171 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
172 | 137 | leidd 11541 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
173 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
174 | 173 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
175 | 174 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
176 | 172, 175 | breqtrrd 5102 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
177 | 176 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
178 | 130, 177 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
179 | 178 | adantlr 712 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
180 | 162 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
181 | 180 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
182 | 170, 171,
179, 181 | ifbothda 4497 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
183 | 182 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
184 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
185 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V |
186 | 185, 64 | ifex 4509 |
. . . . . . . . . . . . . 14
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V |
187 | 186 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V) |
188 | | fvexd 6789 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V) |
189 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
190 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
191 | 184, 187,
188, 189, 190 | ofrfval2 7554 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
192 | 191 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
193 | 183, 192 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
194 | | itg2le 24904 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑡 ∈ ℝ
↦ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
195 | 148, 169,
193, 194 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
196 | 128, 195 | sylan 580 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
197 | | simpllr 773 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) |
198 | 151, 168,
154, 196, 197 | xrlelttrd 12894 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
199 | 151, 154,
198 | xrltled 12884 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
200 | 199 | adantllr 716 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
201 | 200 | 3adantr3 1170 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
202 | | itg2lecl 24903 |
. . . 4
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑦 / 2) ∈
ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
203 | 124, 127,
201, 202 | syl3anc 1370 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
204 | 203 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
205 | 126 | ad3antlr 728 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(𝑦 / 2) ∈
ℝ) |
206 | 82 | adantr 481 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
207 | | 2rp 12735 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
208 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ran
abs |
209 | | frn 6607 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → ran abs ⊆
ℝ) |
210 | 27, 209 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ran abs
⊆ ℝ |
211 | 208, 210 | sstri 3930 |
. . . . . . . . . . . . . . 15
⊢ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆
ℝ |
212 | 211 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ) |
213 | 1 | frnd 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ⊆
ℝ) |
214 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ran 𝑓 ⊆ ℝ) |
215 | 5 | frnd 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 ∈ dom ∫1
→ ran 𝑔 ⊆
ℝ) |
216 | 215 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ran 𝑔 ⊆ ℝ) |
217 | 214, 216 | unssd 4120 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℝ) |
218 | 217, 62 | sstrdi 3933 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ) |
219 | | i1f0rn 24846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ 0 ∈ ran 𝑓) |
220 | | elun1 4110 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ran 𝑓 → 0 ∈ (ran
𝑓 ∪ ran 𝑔)) |
221 | 219, 220 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ 0 ∈ (ran 𝑓
∪ ran 𝑔)) |
222 | 221 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ∈ (ran 𝑓 ∪ ran 𝑔)) |
223 | | ffn 6600 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
224 | 27, 223 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ abs Fn
ℂ |
225 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . 17
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ 0 ∈ (ran 𝑓 ∪
ran 𝑔)) →
(abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
226 | 224, 225 | mp3an1 1447 |
. . . . . . . . . . . . . . . 16
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 0 ∈
(ran 𝑓 ∪ ran 𝑔)) → (abs‘0) ∈
(abs “ (ran 𝑓 ∪
ran 𝑔))) |
227 | 218, 222,
226 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
228 | 227 | ne0d 4269 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅) |
229 | | ffun 6603 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → Fun abs) |
230 | 27, 229 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ Fun
abs |
231 | | i1frn 24841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ∈
Fin) |
232 | | i1frn 24841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ ran 𝑔 ∈
Fin) |
233 | | unfi 8955 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧ ran
𝑔 ∈ Fin) → (ran
𝑓 ∪ ran 𝑔) ∈ Fin) |
234 | 231, 232,
233 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ∈ Fin) |
235 | | imafi 8958 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun abs
∧ (ran 𝑓 ∪ ran
𝑔) ∈ Fin) → (abs
“ (ran 𝑓 ∪ ran
𝑔)) ∈
Fin) |
236 | 230, 234,
235 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ∈ Fin) |
237 | | fimaxre2 11920 |
. . . . . . . . . . . . . . 15
⊢ (((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ∈ Fin) →
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) |
238 | 211, 236,
237 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦 ≤ 𝑥) |
239 | | suprcl 11935 |
. . . . . . . . . . . . . 14
⊢ (((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
240 | 212, 228,
238, 239 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
241 | 240 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
242 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 ∈
ℝ) |
243 | 218 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → 𝑟 ∈
ℂ) |
244 | 243 | abscld 15148 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ∈
ℝ) |
245 | 244 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ∈
ℝ) |
246 | | absgt0 15036 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℂ → (𝑟 ≠ 0 ↔ 0 <
(abs‘𝑟))) |
247 | 243, 246 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (𝑟 ≠ 0 ↔ 0 <
(abs‘𝑟))) |
248 | 247 | biimpa 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) ∧ 𝑟 ≠ 0) → 0 <
(abs‘𝑟)) |
249 | 248 | anasss 467 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 < (abs‘𝑟)) |
250 | 212, 228,
238 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran
𝑓 ∪ ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
251 | 250 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → ((abs “
(ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
252 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . 17
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
253 | 224, 252 | mp3an1 1447 |
. . . . . . . . . . . . . . . 16
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
254 | 218, 253 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
255 | | suprub 11936 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘𝑟) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
256 | 251, 254,
255 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ≤ sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
257 | 256 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ≤ sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
258 | 242, 245,
241, 249, 257 | ltletrd 11135 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 < sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
259 | 241, 258 | elrpd 12769 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) |
260 | 259 | rexlimdvaa 3214 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0 → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+)) |
261 | 260 | imp 407 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) |
262 | | rpmulcl 12753 |
. . . . . . . . 9
⊢ ((2
∈ ℝ+ ∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
263 | 207, 261,
262 | sylancr 587 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
264 | 206, 263 | rerpdivcld 12803 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
265 | 264 | adantll 711 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
266 | 265 | adantlr 712 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
267 | 266 | ad3antrrr 727 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
268 | | simp-4l 780 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → 𝜑) |
269 | | iccssre 13161 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
270 | 85, 87, 269 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
271 | 270, 62 | sstrdi 3933 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
272 | 271 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ ℂ) |
273 | 271 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → 𝑢 ∈ ℂ) |
274 | | subcl 11220 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑤 − 𝑢) ∈ ℂ) |
275 | 272, 273,
274 | syl2anr 597 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) ∧ (𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑤 − 𝑢) ∈ ℂ) |
276 | 275 | anandis 675 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑤 − 𝑢) ∈ ℂ) |
277 | 276 | abscld 15148 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
278 | 277 | 3adantr3 1170 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
279 | 268, 278 | sylan 580 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
280 | 279 | adantr 481 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(abs‘(𝑤 − 𝑢)) ∈
ℝ) |
281 | | rpdivcl 12755 |
. . . . . . . . 9
⊢ (((𝑦 / 2) ∈ ℝ+
∧ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ+) |
282 | 152, 263,
281 | syl2anr 597 |
. . . . . . . 8
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ+) |
283 | 282 | rpred 12772 |
. . . . . . 7
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
284 | 283 | adantlll 715 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
285 | 284 | adantllr 716 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
286 | 285 | ad2antrr 723 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) ∈ ℝ) |
287 | 270 | sseld 3920 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) → 𝑢 ∈ ℝ)) |
288 | 270 | sseld 3920 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ∈ ℝ)) |
289 | | idd 24 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ≤ 𝑤 → 𝑢 ≤ 𝑤)) |
290 | 287, 288,
289 | 3anim123d 1442 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤))) |
291 | 290 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤))) |
292 | 291 | imp 407 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) |
293 | 55 | abscld 15148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
294 | 293 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈
ℝ*) |
295 | | elxrge0 13189 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
296 | 294, 56, 295 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞)) |
297 | | ifcl 4504 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
298 | 296, 119,
297 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
299 | 298 | fmpttd 6989 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
300 | 240 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℂ) |
301 | 300 | 2timesd 12216 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, <
))) |
302 | 240, 240 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ) |
303 | 302 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ*) |
304 | | abs0 14997 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(abs‘0) = 0 |
305 | 304, 227 | eqeltrrid 2844 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
306 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
307 | 250, 305,
306 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
308 | 240, 240,
307, 307 | addge0d 11551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
309 | | elxrge0 13189 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞) ↔ ((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ* ∧ 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)))) |
310 | 303, 308,
309 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞)) |
311 | 301, 310 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞)) |
312 | | ifcl 4504 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞)
∧ 0 ∈ (0[,]+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
313 | 311, 119,
312 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
314 | 313 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
315 | 314 | fmpttd 6989 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)):ℝ⟶(0[,]+∞)) |
316 | 1 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
317 | 316 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
318 | 317 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ ℝ) |
319 | 5 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
320 | 319 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
321 | 320 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℝ) |
322 | | readdcl 10954 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ (abs‘(𝑔‘𝑡)) ∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
323 | 318, 321,
322 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
324 | 323 | anandirs 676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
325 | 302 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ) |
326 | | mulcl 10955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
327 | 4, 320, 326 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
328 | | abstri 15042 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
329 | 317, 327,
328 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
330 | 329 | anandirs 676 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
331 | | absmul 15006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (abs‘(i
· (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
332 | 4, 320, 331 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
333 | | absi 14998 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(abs‘i) = 1 |
334 | 333 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((abs‘i) · (abs‘(𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡))) |
335 | 332, 334 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡)))) |
336 | 321 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℂ) |
337 | 336 | mulid2d 10993 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (1 · (abs‘(𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
338 | 335, 337 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
339 | 338 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
340 | 339 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡)))) = ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
341 | 330, 340 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
342 | 318 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ∈ ℝ) |
343 | 321 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ∈ ℝ) |
344 | 240 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
345 | 250 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran
𝑓 ∪ ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
346 | 218 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ) |
347 | 1 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
348 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑓‘𝑡) ∈ ran 𝑓) |
349 | 347, 348 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈ ran 𝑓) |
350 | | elun1 4110 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓‘𝑡) ∈ ran 𝑓 → (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
351 | 349, 350 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
352 | 351 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
353 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
354 | 224, 353 | mp3an1 1447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
355 | 346, 352,
354 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
356 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑓‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
357 | 345, 355,
356 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
358 | 5 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 Fn
ℝ) |
359 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑔‘𝑡) ∈ ran 𝑔) |
360 | 358, 359 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈ ran 𝑔) |
361 | | elun2 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔‘𝑡) ∈ ran 𝑔 → (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
362 | 360, 361 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
363 | 362 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
364 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
365 | 224, 364 | mp3an1 1447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
366 | 346, 363,
365 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
367 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑔‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
368 | 345, 366,
367 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
369 | 342, 343,
344, 344, 357, 368 | le2addd 11594 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
370 | 293, 324,
325, 341, 369 | letrd 11132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
371 | 301 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, <
))) |
372 | 370, 371 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
373 | 50, 372 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
374 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
375 | 374 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
376 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) |
377 | 376 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) |
378 | 373, 375,
377 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
379 | 378 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
380 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → 0 ≤ 0) |
381 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
382 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) =
0) |
383 | 380, 381,
382 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
384 | 379, 383 | pm2.61d1 180 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
385 | 384 | ralrimivw 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
386 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
V |
387 | 386, 64 | ifex 4509 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
V |
388 | 387 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
V) |
389 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
390 | 14, 71, 388, 74, 389 | ofrfval2 7554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) ↔
∀𝑡 ∈ ℝ
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
391 | 385, 390 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
392 | | itg2le 24904 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
393 | 299, 315,
391, 392 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
394 | 393 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
395 | | mblvol 24694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢(,)𝑤) ∈ dom vol → (vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤))) |
396 | 34, 395 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤)) |
397 | | ovolioo 24732 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol*‘(𝑢(,)𝑤)) = (𝑤 − 𝑢)) |
398 | 396, 397 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) = (𝑤 − 𝑢)) |
399 | | resubcl 11285 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑤 − 𝑢) ∈ ℝ) |
400 | 399 | ancoms 459 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − 𝑢) ∈ ℝ) |
401 | 400 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (𝑤 − 𝑢) ∈ ℝ) |
402 | 398, 401 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) ∈ ℝ) |
403 | | elrege0 13186 |
. . . . . . . . . . . . . . . . 17
⊢ (sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ) ∈
(0[,)+∞) ↔ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ ∧ 0
≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) |
404 | 240, 307,
403 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
(0[,)+∞)) |
405 | | ge0addcl 13192 |
. . . . . . . . . . . . . . . 16
⊢
((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞)
∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞))
→ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
406 | 404, 404,
405 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
407 | 301, 406 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
408 | | itg2const 24905 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢(,)𝑤) ∈ dom vol ∧ (vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ))
∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )) · (vol‘(𝑢(,)𝑤)))) |
409 | 34, 408 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢
(((vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ))
∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )) · (vol‘(𝑢(,)𝑤)))) |
410 | 402, 407,
409 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
411 | 394, 410 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
412 | 411 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ ℝ
∧ 𝑤 ∈ ℝ
∧ 𝑢 ≤ 𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
413 | 412 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
414 | 82 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
415 | 402 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (vol‘(𝑢(,)𝑤)) ∈ ℝ) |
416 | 263 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
417 | 416 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
418 | 414, 415,
417 | ledivmuld 12825 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(vol‘(𝑢(,)𝑤)) ↔
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤))))) |
419 | 413, 418 | mpbird 256 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(vol‘(𝑢(,)𝑤))) |
420 | | abssubge0 15039 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (abs‘(𝑤 − 𝑢)) = (𝑤 − 𝑢)) |
421 | 397, 420 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol*‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
422 | 396, 421 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
423 | 422 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
424 | 419, 423 | breqtrd 5100 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
425 | 292, 424 | syldan 591 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
426 | 425 | adantllr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
427 | 426 | adantlr 712 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
428 | 427 | adantr 481 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
429 | | simpr 485 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)))) |
430 | 267, 280,
286, 428, 429 | lelttrd 11133 |
. . 3
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )))) |
431 | 82 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
432 | 431 | ad3antrrr 727 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
433 | 126 | adantl 482 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈
ℝ) |
434 | 416 | adantlr 712 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
435 | 434 | adantr 481 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
436 | 432, 433,
435 | ltdiv1d 12817 |
. . . 4
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))))) |
437 | 436 | ad2antrr 723 |
. . 3
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))))) |
438 | 430, 437 | mpbird 256 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2)) |
439 | 198 | adantllr 716 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
440 | 439 | 3adantr3 1170 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
441 | 440 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
442 | 83, 204, 205, 205, 438, 441 | lt2addd 11598 |
1
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) |