| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snunioo1 | Structured version Visualization version GIF version | ||
| Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| snunioo1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4103 | . 2 ⊢ ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) | |
| 2 | iccid 13285 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐴[,]𝐴) = {𝐴}) |
| 4 | 3 | uneq2d 4113 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴(,)𝐵) ∪ {𝐴})) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
| 6 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) | |
| 7 | xrleid 13045 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐴) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 10 | df-icc 13247 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 11 | df-ioo 13244 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 12 | xrltnle 11174 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 13 | df-ico 13246 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 14 | xrlelttr 13050 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝑤 < 𝐵)) | |
| 15 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ∈ ℝ*) | |
| 16 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝑤 ∈ ℝ*) | |
| 17 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 < 𝑤) | |
| 18 | 15, 16, 17 | xrltled 13044 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ≤ 𝑤) |
| 19 | 18 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤) → 𝐴 ≤ 𝑤)) |
| 20 | 10, 11, 12, 13, 14, 19 | ixxun 13256 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 21 | 5, 5, 6, 8, 9, 20 | syl32anc 1380 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 22 | 1, 4, 21 | 3eqtr3a 2790 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {csn 4571 class class class wbr 5086 (class class class)co 7341 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 (,)cioo 13240 [,)cico 13242 [,]cicc 13243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-ioo 13244 df-ico 13246 df-icc 13247 |
| This theorem is referenced by: limcresioolb 45681 icocncflimc 45927 volico 46021 fourierdlem48 46192 fouriersw 46269 |
| Copyright terms: Public domain | W3C validator |