| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snunioo1 | Structured version Visualization version GIF version | ||
| Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| snunioo1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4157 | . 2 ⊢ ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) | |
| 2 | iccid 13433 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐴[,]𝐴) = {𝐴}) |
| 4 | 3 | uneq2d 4167 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴(,)𝐵) ∪ {𝐴})) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
| 6 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) | |
| 7 | xrleid 13194 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐴) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 10 | df-icc 13395 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 11 | df-ioo 13392 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 12 | xrltnle 11329 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 13 | df-ico 13394 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 14 | xrlelttr 13199 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝑤 < 𝐵)) | |
| 15 | simpl1 1191 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ∈ ℝ*) | |
| 16 | simpl3 1193 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝑤 ∈ ℝ*) | |
| 17 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 < 𝑤) | |
| 18 | 15, 16, 17 | xrltled 13193 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ≤ 𝑤) |
| 19 | 18 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤) → 𝐴 ≤ 𝑤)) |
| 20 | 10, 11, 12, 13, 14, 19 | ixxun 13404 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 21 | 5, 5, 6, 8, 9, 20 | syl32anc 1379 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
| 22 | 1, 4, 21 | 3eqtr3a 2800 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 {csn 4625 class class class wbr 5142 (class class class)co 7432 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 (,)cioo 13388 [,)cico 13390 [,]cicc 13391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ioo 13392 df-ico 13394 df-icc 13395 |
| This theorem is referenced by: limcresioolb 45663 icocncflimc 45909 volico 46003 fourierdlem48 46174 fouriersw 46251 |
| Copyright terms: Public domain | W3C validator |