Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snunioo1 Structured version   Visualization version   GIF version

Theorem snunioo1 42725
Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
snunioo1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))

Proof of Theorem snunioo1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 4067 . 2 ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵))
2 iccid 12980 . . . 4 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
323ad2ant1 1135 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐴[,]𝐴) = {𝐴})
43uneq2d 4077 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴(,)𝐵) ∪ {𝐴}))
5 simp1 1138 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
6 simp2 1139 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
7 xrleid 12741 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
873ad2ant1 1135 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴𝐴)
9 simp3 1140 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
10 df-icc 12942 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
11 df-ioo 12939 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
12 xrltnle 10900 . . . 4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
13 df-ico 12941 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
14 xrlelttr 12746 . . . 4 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐴𝐴 < 𝐵) → 𝑤 < 𝐵))
15 simpl1 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 ∈ ℝ*)
16 simpl3 1195 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝑤 ∈ ℝ*)
17 simprr 773 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 < 𝑤)
1815, 16, 17xrltled 12740 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴𝑤)
1918ex 416 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐴𝐴 < 𝑤) → 𝐴𝑤))
2010, 11, 12, 13, 14, 19ixxun 12951 . . 3 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
215, 5, 6, 8, 9, 20syl32anc 1380 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
221, 4, 213eqtr3a 2802 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cun 3864  {csn 4541   class class class wbr 5053  (class class class)co 7213  *cxr 10866   < clt 10867  cle 10868  (,)cioo 12935  [,)cico 12937  [,]cicc 12938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-ioo 12939  df-ico 12941  df-icc 12942
This theorem is referenced by:  limcresioolb  42859  icocncflimc  43105  volico  43199  fourierdlem48  43370  fouriersw  43447
  Copyright terms: Public domain W3C validator