![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snunioo1 | Structured version Visualization version GIF version |
Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
snunioo1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4050 | . 2 ⊢ ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) | |
2 | iccid 12633 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | |
3 | 2 | 3ad2ant1 1126 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐴[,]𝐴) = {𝐴}) |
4 | 3 | uneq2d 4060 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐴[,]𝐴)) = ((𝐴(,)𝐵) ∪ {𝐴})) |
5 | simp1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
6 | simp2 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) | |
7 | xrleid 12394 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
8 | 7 | 3ad2ant1 1126 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐴) |
9 | simp3 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
10 | df-icc 12595 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
11 | df-ioo 12592 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
12 | xrltnle 10555 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
13 | df-ico 12594 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
14 | xrlelttr 12399 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝑤 < 𝐵)) | |
15 | simpl1 1184 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ∈ ℝ*) | |
16 | simpl3 1186 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝑤 ∈ ℝ*) | |
17 | simprr 769 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 < 𝑤) | |
18 | 15, 16, 17 | xrltled 12393 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ≤ 𝑤) |
19 | 18 | ex 413 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤) → 𝐴 ≤ 𝑤)) |
20 | 10, 11, 12, 13, 14, 19 | ixxun 12604 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
21 | 5, 5, 6, 8, 9, 20 | syl32anc 1371 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) |
22 | 1, 4, 21 | 3eqtr3a 2855 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∪ cun 3857 {csn 4472 class class class wbr 4962 (class class class)co 7016 ℝ*cxr 10520 < clt 10521 ≤ cle 10522 (,)cioo 12588 [,)cico 12590 [,]cicc 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-pre-lttri 10457 ax-pre-lttrn 10458 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-ioo 12592 df-ico 12594 df-icc 12595 |
This theorem is referenced by: limcresioolb 41466 icocncflimc 41713 volico 41810 fourierdlem48 41981 fouriersw 42058 |
Copyright terms: Public domain | W3C validator |