Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioossicc | Structured version Visualization version GIF version |
Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
Ref | Expression |
---|---|
ioossicc | ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 13092 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | df-icc 13095 | . 2 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
3 | xrltle 12892 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | xrltle 12892 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 13102 | 1 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
Copyright terms: Public domain | W3C validator |