| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccss2 | Structured version Visualization version GIF version | ||
| Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| iccss2 | ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-icc 13254 | . . . . . 6 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 2 | 1 | elixx3g 13260 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 4 | simp1d 1142 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
| 6 | 4 | simp2d 1143 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
| 7 | 2 | simprbi 496 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| 10 | 1 | elixx3g 13260 | . . . . 5 ⊢ (𝐷 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
| 11 | 10 | simprbi 496 | . . . 4 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
| 12 | 11 | simprd 495 | . . 3 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → 𝐷 ≤ 𝐵) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ≤ 𝐵) |
| 14 | xrletr 13059 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
| 15 | xrletr 13059 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 ≤ 𝐵)) | |
| 16 | 1, 1, 14, 15 | ixxss12 13267 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
| 17 | 5, 6, 9, 13, 16 | syl22anc 838 | 1 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 (class class class)co 7352 ℝ*cxr 11152 ≤ cle 11154 [,]cicc 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-icc 13254 |
| This theorem is referenced by: ordtresticc 23139 iccconn 24747 icccvx 24876 oprpiece1res1 24877 oprpiece1res2 24878 pcoass 24952 dvlip 25926 c1liplem1 25929 dvgt0lem1 25935 ftc2ditglem 25980 ttgcontlem1 28864 unitssxrge0 33934 xrge0iifhmeo 33970 |
| Copyright terms: Public domain | W3C validator |