MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss2 Structured version   Visualization version   GIF version

Theorem iccss2 13478
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
iccss2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))

Proof of Theorem iccss2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13414 . . . . . 6 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx3g 13420 . . . . 5 (𝐶 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶𝐵)))
32simplbi 497 . . . 4 (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
43adantr 480 . . 3 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp1d 1142 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
64simp2d 1143 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
72simprbi 496 . . . 4 (𝐶 ∈ (𝐴[,]𝐵) → (𝐴𝐶𝐶𝐵))
87adantr 480 . . 3 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴𝐶𝐶𝐵))
98simpld 494 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
101elixx3g 13420 . . . . 5 (𝐷 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴𝐷𝐷𝐵)))
1110simprbi 496 . . . 4 (𝐷 ∈ (𝐴[,]𝐵) → (𝐴𝐷𝐷𝐵))
1211simprd 495 . . 3 (𝐷 ∈ (𝐴[,]𝐵) → 𝐷𝐵)
1312adantl 481 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷𝐵)
14 xrletr 13220 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐶𝐶𝑤) → 𝐴𝑤))
15 xrletr 13220 . . 3 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐷𝐷𝐵) → 𝑤𝐵))
161, 1, 14, 15ixxss12 13427 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
175, 6, 9, 13, 16syl22anc 838 1 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wss 3976   class class class wbr 5166  (class class class)co 7448  *cxr 11323  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414
This theorem is referenced by:  ordtresticc  23252  iccconn  24871  icccvx  25000  oprpiece1res1  25001  oprpiece1res2  25002  pcoass  25076  dvlip  26052  c1liplem1  26055  dvgt0lem1  26061  ftc2ditglem  26106  ttgcontlem1  28917  unitssxrge0  33846  xrge0iifhmeo  33882
  Copyright terms: Public domain W3C validator