![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccss2 | Structured version Visualization version GIF version |
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
iccss2 | ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 13414 | . . . . . 6 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx3g 13420 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
5 | 4 | simp1d 1142 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
6 | 4 | simp2d 1143 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
7 | 2 | simprbi 496 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | 8 | simpld 494 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
10 | 1 | elixx3g 13420 | . . . . 5 ⊢ (𝐷 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
11 | 10 | simprbi 496 | . . . 4 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
12 | 11 | simprd 495 | . . 3 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → 𝐷 ≤ 𝐵) |
13 | 12 | adantl 481 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ≤ 𝐵) |
14 | xrletr 13220 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
15 | xrletr 13220 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 ≤ 𝐵)) | |
16 | 1, 1, 14, 15 | ixxss12 13427 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
17 | 5, 6, 9, 13, 16 | syl22anc 838 | 1 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: ordtresticc 23252 iccconn 24871 icccvx 25000 oprpiece1res1 25001 oprpiece1res2 25002 pcoass 25076 dvlip 26052 c1liplem1 26055 dvgt0lem1 26061 ftc2ditglem 26106 ttgcontlem1 28917 unitssxrge0 33846 xrge0iifhmeo 33882 |
Copyright terms: Public domain | W3C validator |