![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccss2 | Structured version Visualization version GIF version |
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
iccss2 | ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 12554 | . . . . . 6 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx3g 12560 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
3 | 2 | simplbi 490 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
4 | 3 | adantr 473 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
5 | 4 | simp1d 1122 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
6 | 4 | simp2d 1123 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
7 | 2 | simprbi 489 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
8 | 7 | adantr 473 | . . 3 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | 8 | simpld 487 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
10 | 1 | elixx3g 12560 | . . . . 5 ⊢ (𝐷 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
11 | 10 | simprbi 489 | . . . 4 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
12 | 11 | simprd 488 | . . 3 ⊢ (𝐷 ∈ (𝐴[,]𝐵) → 𝐷 ≤ 𝐵) |
13 | 12 | adantl 474 | . 2 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ≤ 𝐵) |
14 | xrletr 12361 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
15 | xrletr 12361 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 ≤ 𝐵)) | |
16 | 1, 1, 14, 15 | ixxss12 12567 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
17 | 5, 6, 9, 13, 16 | syl22anc 826 | 1 ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2048 ⊆ wss 3825 class class class wbr 4923 (class class class)co 6970 ℝ*cxr 10465 ≤ cle 10467 [,]cicc 12550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-pre-lttri 10401 ax-pre-lttrn 10402 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-po 5319 df-so 5320 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-icc 12554 |
This theorem is referenced by: ordtresticc 21525 iccconn 23131 icccvx 23247 oprpiece1res1 23248 oprpiece1res2 23249 pcoass 23321 dvlip 24283 c1liplem1 24286 dvgt0lem1 24292 ftc2ditglem 24335 ttgcontlem1 26364 unitssxrge0 30744 xrge0iifhmeo 30780 |
Copyright terms: Public domain | W3C validator |