MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss2 Structured version   Visualization version   GIF version

Theorem iccss2 13314
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
iccss2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))

Proof of Theorem iccss2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13249 . . . . . 6 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx3g 13255 . . . . 5 (𝐶 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶𝐵)))
32simplbi 497 . . . 4 (𝐶 ∈ (𝐴[,]𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
43adantr 480 . . 3 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp1d 1142 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
64simp2d 1143 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
72simprbi 496 . . . 4 (𝐶 ∈ (𝐴[,]𝐵) → (𝐴𝐶𝐶𝐵))
87adantr 480 . . 3 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐴𝐶𝐶𝐵))
98simpld 494 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
101elixx3g 13255 . . . . 5 (𝐷 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴𝐷𝐷𝐵)))
1110simprbi 496 . . . 4 (𝐷 ∈ (𝐴[,]𝐵) → (𝐴𝐷𝐷𝐵))
1211simprd 495 . . 3 (𝐷 ∈ (𝐴[,]𝐵) → 𝐷𝐵)
1312adantl 481 . 2 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷𝐵)
14 xrletr 13054 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐶𝐶𝑤) → 𝐴𝑤))
15 xrletr 13054 . . 3 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐷𝐷𝐵) → 𝑤𝐵))
161, 1, 14, 15ixxss12 13262 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
175, 6, 9, 13, 16syl22anc 838 1 ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wss 3902   class class class wbr 5091  (class class class)co 7346  *cxr 11142  cle 11144  [,]cicc 13245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-icc 13249
This theorem is referenced by:  ordtresticc  23136  iccconn  24744  icccvx  24873  oprpiece1res1  24874  oprpiece1res2  24875  pcoass  24949  dvlip  25923  c1liplem1  25926  dvgt0lem1  25932  ftc2ditglem  25977  ttgcontlem1  28861  unitssxrge0  33908  xrge0iifhmeo  33944
  Copyright terms: Public domain W3C validator