Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snunico | Structured version Visualization version GIF version |
Description: The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
snunico | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
2 | iccid 13124 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵[,]𝐵) = {𝐵}) |
4 | 3 | uneq2d 4097 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴[,)𝐵) ∪ {𝐵})) |
5 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
6 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
7 | 1 | xrleidd 12886 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
8 | df-ico 13085 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | df-icc 13086 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
10 | xrlenlt 11040 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
11 | xrltle 12883 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) | |
12 | 11 | 3adant3 1131 | . . . . 5 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 ≤ 𝐵)) |
13 | 12 | adantrd 492 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵) → 𝑤 ≤ 𝐵)) |
14 | xrletr 12892 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
15 | 8, 9, 10, 9, 13, 14 | ixxun 13095 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ((𝐴[,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴[,]𝐵)) |
16 | 5, 1, 1, 6, 7, 15 | syl32anc 1377 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴[,]𝐵)) |
17 | 4, 16 | eqtr3d 2780 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ico 13085 df-icc 13086 |
This theorem is referenced by: prunioo 13213 iccpnfcnv 24107 iccpnfhmeo 24108 elntg2 27353 xrge0iifcnv 31883 |
Copyright terms: Public domain | W3C validator |