![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc1 | Structured version Visualization version GIF version |
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elicc1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 12494 | . 2 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx1 12496 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2106 class class class wbr 4886 (class class class)co 6922 ℝ*cxr 10410 ≤ cle 10412 [,]cicc 12490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-xr 10415 df-icc 12494 |
This theorem is referenced by: iccid 12532 iccleub 12541 iccgelb 12542 elicc2 12550 elicc4 12552 xrge0neqmnfOLD 12590 elxrge0 12595 lbicc2 12602 ubicc2 12603 difreicc 12621 cnblcld 22986 oprpiece1res1 23158 ovolf 23686 volivth 23811 itg2ge0 23939 itg2const2 23945 taylfvallem1 24548 tayl0 24553 radcnvcl 24608 radcnvle 24611 psercnlem1 24616 eliccelico 30103 xrdifh 30106 unitssxrge0 30544 esumle 30718 esumlef 30722 esumpinfsum 30737 voliune 30890 volfiniune 30891 ddemeas 30897 prob01 31074 elicc3 32900 ftc1cnnclem 34092 ftc1anc 34102 ftc2nc 34103 iocinico 38737 icoiccdif 40641 iblsplit 41091 iblspltprt 41098 itgspltprt 41104 fourierdlem1 41234 iccpartrn 42380 rrxsphere 43466 |
Copyright terms: Public domain | W3C validator |