Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicc1 | Structured version Visualization version GIF version |
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elicc1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 13136 | . 2 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx1 13138 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 ℝ*cxr 11058 ≤ cle 11060 [,]cicc 13132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-xr 11063 df-icc 13136 |
This theorem is referenced by: iccid 13174 iccleub 13184 iccgelb 13185 elicc2 13194 elicc4 13196 elxrge0 13239 lbicc2 13246 ubicc2 13247 difreicc 13266 cnblcld 23987 ovolf 24695 volivth 24820 itg2ge0 24949 itg2const2 24955 taylfvallem1 25565 tayl0 25570 radcnvcl 25625 radcnvle 25628 psercnlem1 25633 eliccelico 31147 xrdifh 31150 unitssxrge0 31899 esumle 32075 esumlef 32079 esumpinfsum 32094 voliune 32246 volfiniune 32247 ddemeas 32253 prob01 32429 elicc3 34555 ftc1cnnclem 35896 ftc1anc 35906 ftc2nc 35907 dvle2 40280 iocinico 41239 icoiccdif 43291 iblsplit 43736 iblspltprt 43743 itgspltprt 43749 fourierdlem1 43878 iccpartrn 45126 rrxsphere 46338 |
Copyright terms: Public domain | W3C validator |