MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Structured version   Visualization version   GIF version

Theorem elicc1 12531
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 12494 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx1 12496 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wcel 2106   class class class wbr 4886  (class class class)co 6922  *cxr 10410  cle 10412  [,]cicc 12490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-xr 10415  df-icc 12494
This theorem is referenced by:  iccid  12532  iccleub  12541  iccgelb  12542  elicc2  12550  elicc4  12552  xrge0neqmnfOLD  12590  elxrge0  12595  lbicc2  12602  ubicc2  12603  difreicc  12621  cnblcld  22986  oprpiece1res1  23158  ovolf  23686  volivth  23811  itg2ge0  23939  itg2const2  23945  taylfvallem1  24548  tayl0  24553  radcnvcl  24608  radcnvle  24611  psercnlem1  24616  eliccelico  30103  xrdifh  30106  unitssxrge0  30544  esumle  30718  esumlef  30722  esumpinfsum  30737  voliune  30890  volfiniune  30891  ddemeas  30897  prob01  31074  elicc3  32900  ftc1cnnclem  34092  ftc1anc  34102  ftc2nc  34103  iocinico  38737  icoiccdif  40641  iblsplit  41091  iblspltprt  41098  itgspltprt  41104  fourierdlem1  41234  iccpartrn  42380  rrxsphere  43466
  Copyright terms: Public domain W3C validator