MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Structured version   Visualization version   GIF version

Theorem elicc1 13105
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13068 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx1 13070 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2109   class class class wbr 5078  (class class class)co 7268  *cxr 10992  cle 10994  [,]cicc 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-xr 10997  df-icc 13068
This theorem is referenced by:  iccid  13106  iccleub  13116  iccgelb  13117  elicc2  13126  elicc4  13128  elxrge0  13171  lbicc2  13178  ubicc2  13179  difreicc  13198  cnblcld  23919  ovolf  24627  volivth  24752  itg2ge0  24881  itg2const2  24887  taylfvallem1  25497  tayl0  25502  radcnvcl  25557  radcnvle  25560  psercnlem1  25565  eliccelico  31077  xrdifh  31080  unitssxrge0  31829  esumle  32005  esumlef  32009  esumpinfsum  32024  voliune  32176  volfiniune  32177  ddemeas  32183  prob01  32359  elicc3  34485  ftc1cnnclem  35827  ftc1anc  35837  ftc2nc  35838  dvle2  40060  iocinico  41023  icoiccdif  43016  iblsplit  43461  iblspltprt  43468  itgspltprt  43474  fourierdlem1  43603  iccpartrn  44834  rrxsphere  46046
  Copyright terms: Public domain W3C validator