MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Structured version   Visualization version   GIF version

Theorem elicc1 13292
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13255 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx1 13257 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5092  (class class class)co 7349  *cxr 11148  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-xr 11153  df-icc 13255
This theorem is referenced by:  iccid  13293  iccleub  13304  iccgelb  13305  elicc2  13314  elicc4  13316  elxrge0  13360  lbicc2  13367  ubicc2  13368  difreicc  13387  cnblcld  24660  ovolf  25381  volivth  25506  itg2ge0  25634  itg2const2  25640  taylfvallem1  26262  tayl0  26267  radcnvcl  26324  radcnvle  26327  psercnlem1  26333  eliccelico  32721  xrdifh  32724  unitssxrge0  33873  esumle  34031  esumlef  34035  esumpinfsum  34050  voliune  34202  volfiniune  34203  ddemeas  34209  prob01  34387  elicc3  36301  ftc1cnnclem  37681  ftc1anc  37691  ftc2nc  37692  dvle2  42055  iocinico  43195  icoiccdif  45515  iblsplit  45957  iblspltprt  45964  itgspltprt  45970  fourierdlem1  46099  iccpartrn  47424  rrxsphere  48743
  Copyright terms: Public domain W3C validator