Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicc1 | Structured version Visualization version GIF version |
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elicc1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 13068 | . 2 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx1 13070 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝ*cxr 10992 ≤ cle 10994 [,]cicc 13064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-xr 10997 df-icc 13068 |
This theorem is referenced by: iccid 13106 iccleub 13116 iccgelb 13117 elicc2 13126 elicc4 13128 elxrge0 13171 lbicc2 13178 ubicc2 13179 difreicc 13198 cnblcld 23919 ovolf 24627 volivth 24752 itg2ge0 24881 itg2const2 24887 taylfvallem1 25497 tayl0 25502 radcnvcl 25557 radcnvle 25560 psercnlem1 25565 eliccelico 31077 xrdifh 31080 unitssxrge0 31829 esumle 32005 esumlef 32009 esumpinfsum 32024 voliune 32176 volfiniune 32177 ddemeas 32183 prob01 32359 elicc3 34485 ftc1cnnclem 35827 ftc1anc 35837 ftc2nc 35838 dvle2 40060 iocinico 41023 icoiccdif 43016 iblsplit 43461 iblspltprt 43468 itgspltprt 43474 fourierdlem1 43603 iccpartrn 44834 rrxsphere 46046 |
Copyright terms: Public domain | W3C validator |