MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc1 Structured version   Visualization version   GIF version

Theorem elicc1 13326
Description: Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elicc1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 13289 . 2 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
21elixx1 13291 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  *cxr 11183  cle 11185  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-xr 11188  df-icc 13289
This theorem is referenced by:  iccid  13327  iccleub  13338  iccgelb  13339  elicc2  13348  elicc4  13350  elxrge0  13394  lbicc2  13401  ubicc2  13402  difreicc  13421  cnblcld  24695  ovolf  25416  volivth  25541  itg2ge0  25669  itg2const2  25675  taylfvallem1  26297  tayl0  26302  radcnvcl  26359  radcnvle  26362  psercnlem1  26368  eliccelico  32750  xrdifh  32753  unitssxrge0  33883  esumle  34041  esumlef  34045  esumpinfsum  34060  voliune  34212  volfiniune  34213  ddemeas  34219  prob01  34397  elicc3  36298  ftc1cnnclem  37678  ftc1anc  37688  ftc2nc  37689  dvle2  42053  iocinico  43194  icoiccdif  45515  iblsplit  45957  iblspltprt  45964  itgspltprt  45970  fourierdlem1  46099  iccpartrn  47424  rrxsphere  48730
  Copyright terms: Public domain W3C validator