| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgspliticc | Structured version Visualization version GIF version | ||
| Description: The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgspliticc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| itgspliticc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgspliticc.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
| itgspliticc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) |
| itgspliticc.5 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) |
| itgspliticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgspliticc | ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11169 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | itgspliticc.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) | |
| 4 | itgspliticc.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | elicc2 13313 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 7 | 3, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) |
| 8 | 7 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11169 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 10 | 4 | rexrd 11169 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 11 | df-icc 13254 | . . . . . . 7 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 12 | xrmaxle 13084 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧))) | |
| 13 | xrlemin 13085 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶))) | |
| 14 | 11, 12, 13 | ixxin 13264 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 15 | 2, 9, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 16 | 7 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 17 | 16 | iftrued 4482 | . . . . . 6 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) |
| 18 | 7 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 19 | 18 | iftrued 4482 | . . . . . 6 ⊢ (𝜑 → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) = 𝐵) |
| 20 | 17, 19 | oveq12d 7370 | . . . . 5 ⊢ (𝜑 → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵)) |
| 21 | iccid 13292 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵[,]𝐵) = {𝐵}) |
| 23 | 15, 20, 22 | 3eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |
| 24 | 23 | fveq2d 6832 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵})) |
| 25 | ovolsn 25424 | . . . 4 ⊢ (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0) | |
| 26 | 8, 25 | syl 17 | . . 3 ⊢ (𝜑 → (vol*‘{𝐵}) = 0) |
| 27 | 24, 26 | eqtrd 2768 | . 2 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0) |
| 28 | iccsplit 13387 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) | |
| 29 | 1, 4, 3, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 30 | itgspliticc.4 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) | |
| 31 | itgspliticc.5 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) | |
| 32 | itgspliticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) | |
| 33 | 27, 29, 30, 31, 32 | itgsplit 25765 | 1 ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ∩ cin 3897 ifcif 4474 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 + caddc 11016 ℝ*cxr 11152 ≤ cle 11154 [,]cicc 13250 vol*covol 25391 𝐿1cibl 25546 ∫citg 25547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-rest 17328 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 df-ibl 25551 df-itg 25552 |
| This theorem is referenced by: itgspltprt 46101 fourierdlem107 46335 |
| Copyright terms: Public domain | W3C validator |