| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgspliticc | Structured version Visualization version GIF version | ||
| Description: The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgspliticc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| itgspliticc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgspliticc.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
| itgspliticc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) |
| itgspliticc.5 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) |
| itgspliticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgspliticc | ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11285 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | itgspliticc.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) | |
| 4 | itgspliticc.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | elicc2 13428 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 7 | 3, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) |
| 8 | 7 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11285 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 10 | 4 | rexrd 11285 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 11 | df-icc 13369 | . . . . . . 7 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 12 | xrmaxle 13199 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧))) | |
| 13 | xrlemin 13200 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶))) | |
| 14 | 11, 12, 13 | ixxin 13379 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 15 | 2, 9, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 16 | 7 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 17 | 16 | iftrued 4508 | . . . . . 6 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) |
| 18 | 7 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 19 | 18 | iftrued 4508 | . . . . . 6 ⊢ (𝜑 → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) = 𝐵) |
| 20 | 17, 19 | oveq12d 7423 | . . . . 5 ⊢ (𝜑 → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵)) |
| 21 | iccid 13407 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵[,]𝐵) = {𝐵}) |
| 23 | 15, 20, 22 | 3eqtrd 2774 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |
| 24 | 23 | fveq2d 6880 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵})) |
| 25 | ovolsn 25448 | . . . 4 ⊢ (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0) | |
| 26 | 8, 25 | syl 17 | . . 3 ⊢ (𝜑 → (vol*‘{𝐵}) = 0) |
| 27 | 24, 26 | eqtrd 2770 | . 2 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0) |
| 28 | iccsplit 13502 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) | |
| 29 | 1, 4, 3, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 30 | itgspliticc.4 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) | |
| 31 | itgspliticc.5 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) | |
| 32 | itgspliticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) | |
| 33 | 27, 29, 30, 31, 32 | itgsplit 25789 | 1 ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ifcif 4500 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 + caddc 11132 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 vol*covol 25415 𝐿1cibl 25570 ∫citg 25571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-ibl 25575 df-itg 25576 |
| This theorem is referenced by: itgspltprt 46008 fourierdlem107 46242 |
| Copyright terms: Public domain | W3C validator |