MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgspliticc Structured version   Visualization version   GIF version

Theorem itgspliticc 25738
Description: The integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
itgspliticc.1 (𝜑𝐴 ∈ ℝ)
itgspliticc.2 (𝜑𝐶 ∈ ℝ)
itgspliticc.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgspliticc.4 ((𝜑𝑥 ∈ (𝐴[,]𝐶)) → 𝐷𝑉)
itgspliticc.5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1)
itgspliticc.6 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgspliticc (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgspliticc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgspliticc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 11224 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 itgspliticc.3 . . . . . . . . 9 (𝜑𝐵 ∈ (𝐴[,]𝐶))
4 itgspliticc.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
5 elicc2 13372 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 4, 5syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
73, 6mpbid 232 . . . . . . . 8 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
87simp1d 1142 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98rexrd 11224 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
104rexrd 11224 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 df-icc 13313 . . . . . . 7 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
12 xrmaxle 13143 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴𝑧𝐵𝑧)))
13 xrlemin 13144 . . . . . . 7 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝑧𝐵𝑧𝐶)))
1411, 12, 13ixxin 13323 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)))
152, 9, 9, 10, 14syl22anc 838 . . . . 5 (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)))
167simp2d 1143 . . . . . . 7 (𝜑𝐴𝐵)
1716iftrued 4496 . . . . . 6 (𝜑 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
187simp3d 1144 . . . . . . 7 (𝜑𝐵𝐶)
1918iftrued 4496 . . . . . 6 (𝜑 → if(𝐵𝐶, 𝐵, 𝐶) = 𝐵)
2017, 19oveq12d 7405 . . . . 5 (𝜑 → (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵))
21 iccid 13351 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
229, 21syl 17 . . . . 5 (𝜑 → (𝐵[,]𝐵) = {𝐵})
2315, 20, 223eqtrd 2768 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
2423fveq2d 6862 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵}))
25 ovolsn 25396 . . . 4 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
268, 25syl 17 . . 3 (𝜑 → (vol*‘{𝐵}) = 0)
2724, 26eqtrd 2764 . 2 (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0)
28 iccsplit 13446 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
291, 4, 3, 28syl3anc 1373 . 2 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
30 itgspliticc.4 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐶)) → 𝐷𝑉)
31 itgspliticc.5 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1)
32 itgspliticc.6 . 2 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1)
3327, 29, 30, 31, 32itgsplit 25737 1 (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3912  cin 3913  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  *cxr 11207  cle 11209  [,]cicc 13309  vol*covol 25363  𝐿1cibl 25518  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524
This theorem is referenced by:  itgspltprt  45977  fourierdlem107  46211
  Copyright terms: Public domain W3C validator