| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgspliticc | Structured version Visualization version GIF version | ||
| Description: The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgspliticc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| itgspliticc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgspliticc.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
| itgspliticc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) |
| itgspliticc.5 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) |
| itgspliticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgspliticc | ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11159 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | itgspliticc.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) | |
| 4 | itgspliticc.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | elicc2 13308 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 7 | 3, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) |
| 8 | 7 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11159 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 10 | 4 | rexrd 11159 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 11 | df-icc 13249 | . . . . . . 7 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 12 | xrmaxle 13079 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧))) | |
| 13 | xrlemin 13080 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶))) | |
| 14 | 11, 12, 13 | ixxin 13259 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 15 | 2, 9, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 16 | 7 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 17 | 16 | iftrued 4483 | . . . . . 6 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) |
| 18 | 7 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 19 | 18 | iftrued 4483 | . . . . . 6 ⊢ (𝜑 → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) = 𝐵) |
| 20 | 17, 19 | oveq12d 7364 | . . . . 5 ⊢ (𝜑 → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵)) |
| 21 | iccid 13287 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵[,]𝐵) = {𝐵}) |
| 23 | 15, 20, 22 | 3eqtrd 2770 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |
| 24 | 23 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵})) |
| 25 | ovolsn 25421 | . . . 4 ⊢ (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0) | |
| 26 | 8, 25 | syl 17 | . . 3 ⊢ (𝜑 → (vol*‘{𝐵}) = 0) |
| 27 | 24, 26 | eqtrd 2766 | . 2 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0) |
| 28 | iccsplit 13382 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) | |
| 29 | 1, 4, 3, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 30 | itgspliticc.4 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) | |
| 31 | itgspliticc.5 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) | |
| 32 | itgspliticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) | |
| 33 | 27, 29, 30, 31, 32 | itgsplit 25762 | 1 ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∩ cin 3901 ifcif 4475 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 + caddc 11006 ℝ*cxr 11142 ≤ cle 11144 [,]cicc 13245 vol*covol 25388 𝐿1cibl 25543 ∫citg 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-rest 17323 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 df-cmp 23300 df-ovol 25390 df-vol 25391 df-mbf 25545 df-itg1 25546 df-itg2 25547 df-ibl 25548 df-itg 25549 |
| This theorem is referenced by: itgspltprt 46016 fourierdlem107 46250 |
| Copyright terms: Public domain | W3C validator |