| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgspliticc | Structured version Visualization version GIF version | ||
| Description: The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgspliticc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| itgspliticc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgspliticc.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
| itgspliticc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) |
| itgspliticc.5 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) |
| itgspliticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgspliticc | ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 11224 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | itgspliticc.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) | |
| 4 | itgspliticc.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | elicc2 13372 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) | |
| 6 | 1, 4, 5 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 7 | 3, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) |
| 8 | 7 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11224 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 10 | 4 | rexrd 11224 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 11 | df-icc 13313 | . . . . . . 7 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 12 | xrmaxle 13143 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧))) | |
| 13 | xrlemin 13144 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶))) | |
| 14 | 11, 12, 13 | ixxin 13323 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 15 | 2, 9, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
| 16 | 7 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 17 | 16 | iftrued 4496 | . . . . . 6 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) |
| 18 | 7 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 19 | 18 | iftrued 4496 | . . . . . 6 ⊢ (𝜑 → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) = 𝐵) |
| 20 | 17, 19 | oveq12d 7405 | . . . . 5 ⊢ (𝜑 → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵)) |
| 21 | iccid 13351 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵[,]𝐵) = {𝐵}) |
| 23 | 15, 20, 22 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |
| 24 | 23 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵})) |
| 25 | ovolsn 25396 | . . . 4 ⊢ (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0) | |
| 26 | 8, 25 | syl 17 | . . 3 ⊢ (𝜑 → (vol*‘{𝐵}) = 0) |
| 27 | 24, 26 | eqtrd 2764 | . 2 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0) |
| 28 | iccsplit 13446 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) | |
| 29 | 1, 4, 3, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 30 | itgspliticc.4 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) | |
| 31 | itgspliticc.5 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) | |
| 32 | itgspliticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) | |
| 33 | 27, 29, 30, 31, 32 | itgsplit 25737 | 1 ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ∩ cin 3913 ifcif 4488 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 vol*covol 25363 𝐿1cibl 25518 ∫citg 25519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-ibl 25523 df-itg 25524 |
| This theorem is referenced by: itgspltprt 45977 fourierdlem107 46211 |
| Copyright terms: Public domain | W3C validator |