![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgspliticc | Structured version Visualization version GIF version |
Description: The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
itgspliticc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
itgspliticc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
itgspliticc.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
itgspliticc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) |
itgspliticc.5 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) |
itgspliticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgspliticc | ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgspliticc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 10413 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | itgspliticc.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) | |
4 | itgspliticc.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | elicc2 12533 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) | |
6 | 1, 4, 5 | syl2anc 579 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
7 | 3, 6 | mpbid 224 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) |
8 | 7 | simp1d 1176 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 8 | rexrd 10413 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
10 | 4 | rexrd 10413 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
11 | df-icc 12477 | . . . . . . 7 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
12 | xrmaxle 12309 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧))) | |
13 | xrlemin 12310 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶))) | |
14 | 11, 12, 13 | ixxin 12487 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
15 | 2, 9, 9, 10, 14 | syl22anc 872 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) |
16 | 7 | simp2d 1177 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
17 | 16 | iftrued 4316 | . . . . . 6 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) |
18 | 7 | simp3d 1178 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
19 | 18 | iftrued 4316 | . . . . . 6 ⊢ (𝜑 → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) = 𝐵) |
20 | 17, 19 | oveq12d 6928 | . . . . 5 ⊢ (𝜑 → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴)[,]if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵)) |
21 | iccid 12515 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
22 | 9, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵[,]𝐵) = {𝐵}) |
23 | 15, 20, 22 | 3eqtrd 2865 | . . . 4 ⊢ (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |
24 | 23 | fveq2d 6441 | . . 3 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵})) |
25 | ovolsn 23668 | . . . 4 ⊢ (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0) | |
26 | 8, 25 | syl 17 | . . 3 ⊢ (𝜑 → (vol*‘{𝐵}) = 0) |
27 | 24, 26 | eqtrd 2861 | . 2 ⊢ (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0) |
28 | iccsplit 12605 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) | |
29 | 1, 4, 3, 28 | syl3anc 1494 | . 2 ⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
30 | itgspliticc.4 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) | |
31 | itgspliticc.5 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) | |
32 | itgspliticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) | |
33 | 27, 29, 30, 31, 32 | itgsplit 24008 | 1 ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ∩ cin 3797 ifcif 4308 {csn 4399 class class class wbr 4875 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ℝcr 10258 0cc0 10259 + caddc 10262 ℝ*cxr 10397 ≤ cle 10399 [,]cicc 12473 vol*covol 23635 𝐿1cibl 23790 ∫citg 23791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-disj 4844 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-ofr 7163 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-mod 12971 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-sum 14801 df-rest 16443 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-top 21076 df-topon 21093 df-bases 21128 df-cmp 21568 df-ovol 23637 df-vol 23638 df-mbf 23792 df-itg1 23793 df-itg2 23794 df-ibl 23795 df-itg 23796 |
This theorem is referenced by: itgspltprt 40983 fourierdlem107 41218 |
Copyright terms: Public domain | W3C validator |