MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgspliticc Structured version   Visualization version   GIF version

Theorem itgspliticc 24906
Description: The integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
itgspliticc.1 (𝜑𝐴 ∈ ℝ)
itgspliticc.2 (𝜑𝐶 ∈ ℝ)
itgspliticc.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgspliticc.4 ((𝜑𝑥 ∈ (𝐴[,]𝐶)) → 𝐷𝑉)
itgspliticc.5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1)
itgspliticc.6 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgspliticc (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑉   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgspliticc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgspliticc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21rexrd 10956 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 itgspliticc.3 . . . . . . . . 9 (𝜑𝐵 ∈ (𝐴[,]𝐶))
4 itgspliticc.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
5 elicc2 13073 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 4, 5syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
73, 6mpbid 231 . . . . . . . 8 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
87simp1d 1140 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98rexrd 10956 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
104rexrd 10956 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 df-icc 13015 . . . . . . 7 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
12 xrmaxle 12846 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝑧 ↔ (𝐴𝑧𝐵𝑧)))
13 xrlemin 12847 . . . . . . 7 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑧 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝑧𝐵𝑧𝐶)))
1411, 12, 13ixxin 13025 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)))
152, 9, 9, 10, 14syl22anc 835 . . . . 5 (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)))
167simp2d 1141 . . . . . . 7 (𝜑𝐴𝐵)
1716iftrued 4464 . . . . . 6 (𝜑 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
187simp3d 1142 . . . . . . 7 (𝜑𝐵𝐶)
1918iftrued 4464 . . . . . 6 (𝜑 → if(𝐵𝐶, 𝐵, 𝐶) = 𝐵)
2017, 19oveq12d 7273 . . . . 5 (𝜑 → (if(𝐴𝐵, 𝐵, 𝐴)[,]if(𝐵𝐶, 𝐵, 𝐶)) = (𝐵[,]𝐵))
21 iccid 13053 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
229, 21syl 17 . . . . 5 (𝜑 → (𝐵[,]𝐵) = {𝐵})
2315, 20, 223eqtrd 2782 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
2423fveq2d 6760 . . 3 (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = (vol*‘{𝐵}))
25 ovolsn 24564 . . . 4 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
268, 25syl 17 . . 3 (𝜑 → (vol*‘{𝐵}) = 0)
2724, 26eqtrd 2778 . 2 (𝜑 → (vol*‘((𝐴[,]𝐵) ∩ (𝐵[,]𝐶))) = 0)
28 iccsplit 13146 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
291, 4, 3, 28syl3anc 1369 . 2 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
30 itgspliticc.4 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐶)) → 𝐷𝑉)
31 itgspliticc.5 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1)
32 itgspliticc.6 . 2 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1)
3327, 29, 30, 31, 32itgsplit 24905 1 (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cun 3881  cin 3882  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  *cxr 10939  cle 10941  [,]cicc 13011  vol*covol 24531  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692
This theorem is referenced by:  itgspltprt  43410  fourierdlem107  43644
  Copyright terms: Public domain W3C validator