MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhomai2 Structured version   Visualization version   GIF version

Theorem elhomai2 17069
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
elhomai.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
Assertion
Ref Expression
elhomai2 (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))

Proof of Theorem elhomai2
StepHypRef Expression
1 df-ot 4407 . 2 𝑋, 𝑌, 𝐹⟩ = ⟨⟨𝑋, 𝑌⟩, 𝐹
2 homarcl.h . . . 4 𝐻 = (Homa𝐶)
3 homafval.b . . . 4 𝐵 = (Base‘𝐶)
4 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
6 homaval.x . . . 4 (𝜑𝑋𝐵)
7 homaval.y . . . 4 (𝜑𝑌𝐵)
8 elhomai.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
92, 3, 4, 5, 6, 7, 8elhomai 17068 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
10 df-br 4887 . . 3 (⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹 ↔ ⟨⟨𝑋, 𝑌⟩, 𝐹⟩ ∈ (𝑋𝐻𝑌))
119, 10sylib 210 . 2 (𝜑 → ⟨⟨𝑋, 𝑌⟩, 𝐹⟩ ∈ (𝑋𝐻𝑌))
121, 11syl5eqel 2863 1 (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cop 4404  cotp 4406   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  Hom chom 16349  Catccat 16710  Homachoma 17058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-ot 4407  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-homa 17061
This theorem is referenced by:  idahom  17095  coahom  17105
  Copyright terms: Public domain W3C validator