| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elhomai2 | Structured version Visualization version GIF version | ||
| Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| elhomai.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
| Ref | Expression |
|---|---|
| elhomai2 | ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4586 | . 2 ⊢ 〈𝑋, 𝑌, 𝐹〉 = 〈〈𝑋, 𝑌〉, 𝐹〉 | |
| 2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 6 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | elhomai.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | elhomai 17940 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
| 10 | df-br 5093 | . . 3 ⊢ (〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹 ↔ 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
| 11 | 9, 10 | sylib 218 | . 2 ⊢ (𝜑 → 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| 12 | 1, 11 | eqeltrid 2832 | 1 ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 〈cotp 4585 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 Catccat 17570 Homachoma 17930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-homa 17933 |
| This theorem is referenced by: idahom 17967 coahom 17977 termcarweu 49533 arweuthinc 49534 arweutermc 49535 |
| Copyright terms: Public domain | W3C validator |