| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elhomai2 | Structured version Visualization version GIF version | ||
| Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| elhomai.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
| Ref | Expression |
|---|---|
| elhomai2 | ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4610 | . 2 ⊢ 〈𝑋, 𝑌, 𝐹〉 = 〈〈𝑋, 𝑌〉, 𝐹〉 | |
| 2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 6 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | elhomai.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | elhomai 18044 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
| 10 | df-br 5120 | . . 3 ⊢ (〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹 ↔ 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
| 11 | 9, 10 | sylib 218 | . 2 ⊢ (𝜑 → 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| 12 | 1, 11 | eqeltrid 2838 | 1 ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4607 〈cotp 4609 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Catccat 17674 Homachoma 18034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-homa 18037 |
| This theorem is referenced by: idahom 18071 coahom 18081 termcarweu 49361 arweuthinc 49362 arweutermc 49363 |
| Copyright terms: Public domain | W3C validator |