![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elhomai2 | Structured version Visualization version GIF version |
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
elhomai.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
Ref | Expression |
---|---|
elhomai2 | ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4407 | . 2 ⊢ 〈𝑋, 𝑌, 𝐹〉 = 〈〈𝑋, 𝑌〉, 𝐹〉 | |
2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | elhomai.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) | |
9 | 2, 3, 4, 5, 6, 7, 8 | elhomai 17068 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
10 | df-br 4887 | . . 3 ⊢ (〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹 ↔ 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
11 | 9, 10 | sylib 210 | . 2 ⊢ (𝜑 → 〈〈𝑋, 𝑌〉, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
12 | 1, 11 | syl5eqel 2863 | 1 ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 〈cop 4404 〈cotp 4406 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Hom chom 16349 Catccat 16710 Homachoma 17058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-ot 4407 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-homa 17061 |
This theorem is referenced by: idahom 17095 coahom 17105 |
Copyright terms: Public domain | W3C validator |