MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhomai2 Structured version   Visualization version   GIF version

Theorem elhomai2 18101
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
elhomai.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
Assertion
Ref Expression
elhomai2 (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))

Proof of Theorem elhomai2
StepHypRef Expression
1 df-ot 4657 . 2 𝑋, 𝑌, 𝐹⟩ = ⟨⟨𝑋, 𝑌⟩, 𝐹
2 homarcl.h . . . 4 𝐻 = (Homa𝐶)
3 homafval.b . . . 4 𝐵 = (Base‘𝐶)
4 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
6 homaval.x . . . 4 (𝜑𝑋𝐵)
7 homaval.y . . . 4 (𝜑𝑌𝐵)
8 elhomai.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
92, 3, 4, 5, 6, 7, 8elhomai 18100 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
10 df-br 5167 . . 3 (⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹 ↔ ⟨⟨𝑋, 𝑌⟩, 𝐹⟩ ∈ (𝑋𝐻𝑌))
119, 10sylib 218 . 2 (𝜑 → ⟨⟨𝑋, 𝑌⟩, 𝐹⟩ ∈ (𝑋𝐻𝑌))
121, 11eqeltrid 2848 1 (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654  cotp 4656   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  Homachoma 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-homa 18093
This theorem is referenced by:  idahom  18127  coahom  18137
  Copyright terms: Public domain W3C validator