MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot1stg Structured version   Visualization version   GIF version

Theorem ot1stg 8002
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 8002, ot2ndg 8003, ot3rdg 8004.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot1stg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)

Proof of Theorem ot1stg
StepHypRef Expression
1 df-ot 4610 . . . . . 6 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6879 . . . . 5 (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5439 . . . . . 6 𝐴, 𝐵⟩ ∈ V
4 op1stg 8000 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
53, 4mpan 690 . . . . 5 (𝐶𝑋 → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
62, 5eqtrid 2782 . . . 4 (𝐶𝑋 → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
76fveq2d 6880 . . 3 (𝐶𝑋 → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (1st ‘⟨𝐴, 𝐵⟩))
8 op1stg 8000 . . 3 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
97, 8sylan9eqr 2792 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
1093impa 1109 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cotp 4609  cfv 6531  1st c1st 7986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988
This theorem is referenced by:  oteqimp  8007  el2xptp0  8035  sbcoteq1a  8050  xpord3lem  8148  splval  14769  mamufval  22330  msrval  35560  elmsta  35570  mapdhval  41743  hdmap1val  41817
  Copyright terms: Public domain W3C validator