![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot1stg | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7989, ot2ndg 7990, ot3rdg 7991.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
Ref | Expression |
---|---|
ot1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4638 | . . . . . 6 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | 1 | fveq2i 6895 | . . . . 5 ⊢ (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) |
3 | opex 5465 | . . . . . 6 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
4 | op1stg 7987 | . . . . . 6 ⊢ ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩) | |
5 | 3, 4 | mpan 689 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩) |
6 | 2, 5 | eqtrid 2785 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩) |
7 | 6 | fveq2d 6896 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (1st ‘⟨𝐴, 𝐵⟩)) |
8 | op1stg 7987 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴) | |
9 | 7, 8 | sylan9eqr 2795 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴) |
10 | 9 | 3impa 1111 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 ⟨cotp 4637 ‘cfv 6544 1st c1st 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 |
This theorem is referenced by: oteqimp 7994 el2xptp0 8022 sbcoteq1a 8037 xpord3lem 8135 splval 14701 mamufval 21887 msrval 34529 elmsta 34539 mapdhval 40595 hdmap1val 40669 |
Copyright terms: Public domain | W3C validator |