| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ot1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7961, ot2ndg 7962, ot3rdg 7963.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| Ref | Expression |
|---|---|
| ot1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4594 | . . . . . 6 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | 1 | fveq2i 6843 | . . . . 5 ⊢ (1st ‘〈𝐴, 𝐵, 𝐶〉) = (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
| 3 | opex 5419 | . . . . . 6 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 4 | op1stg 7959 | . . . . . 6 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) | |
| 5 | 3, 4 | mpan 690 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) |
| 6 | 2, 5 | eqtrid 2776 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈𝐴, 𝐵, 𝐶〉) = 〈𝐴, 𝐵〉) |
| 7 | 6 | fveq2d 6844 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = (1st ‘〈𝐴, 𝐵〉)) |
| 8 | op1stg 7959 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 9 | 7, 8 | sylan9eqr 2786 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 〈cotp 4593 ‘cfv 6499 1st c1st 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 |
| This theorem is referenced by: oteqimp 7966 el2xptp0 7994 sbcoteq1a 8009 xpord3lem 8105 splval 14692 mamufval 22312 msrval 35518 elmsta 35528 mapdhval 41711 hdmap1val 41785 |
| Copyright terms: Public domain | W3C validator |