| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ot1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 8002, ot2ndg 8003, ot3rdg 8004.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| Ref | Expression |
|---|---|
| ot1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4610 | . . . . . 6 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | 1 | fveq2i 6879 | . . . . 5 ⊢ (1st ‘〈𝐴, 𝐵, 𝐶〉) = (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
| 3 | opex 5439 | . . . . . 6 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 4 | op1stg 8000 | . . . . . 6 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) | |
| 5 | 3, 4 | mpan 690 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) |
| 6 | 2, 5 | eqtrid 2782 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈𝐴, 𝐵, 𝐶〉) = 〈𝐴, 𝐵〉) |
| 7 | 6 | fveq2d 6880 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = (1st ‘〈𝐴, 𝐵〉)) |
| 8 | op1stg 8000 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 9 | 7, 8 | sylan9eqr 2792 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 〈cotp 4609 ‘cfv 6531 1st c1st 7986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 |
| This theorem is referenced by: oteqimp 8007 el2xptp0 8035 sbcoteq1a 8050 xpord3lem 8148 splval 14769 mamufval 22330 msrval 35560 elmsta 35570 mapdhval 41743 hdmap1val 41817 |
| Copyright terms: Public domain | W3C validator |