![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version |
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
Ref | Expression |
---|---|
el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5724 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉) | |
2 | opeq1 4897 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈𝑝, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
3 | 2 | eqeq2d 2751 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐴 = 〈𝑝, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
4 | 3 | rexbidv 3185 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
5 | 4 | rexxp 5867 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
6 | df-ot 4657 | . . . . . . 7 ⊢ 〈𝑥, 𝑦, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
7 | 6 | eqcomi 2749 | . . . . . 6 ⊢ 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈𝑥, 𝑦, 𝑧〉 |
8 | 7 | eqeq2i 2753 | . . . . 5 ⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
9 | 8 | rexbii 3100 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
10 | 9 | rexbii 3100 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
11 | 10 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
12 | 1, 5, 11 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 〈cotp 4656 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-iun 5017 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: el2xpss 8078 ralxp3f 8178 frpoins3xp3g 8182 poxp3 8191 xpord3pred 8193 sexp3 8194 |
Copyright terms: Public domain | W3C validator |