MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp Structured version   Visualization version   GIF version

Theorem el2xptp 7727
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem el2xptp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5572 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩)
2 opeq1 4795 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
32eqeq2d 2830 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
43rexbidv 3295 . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54rexxp 5706 . 2 (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
6 df-ot 4568 . . . . . . 7 𝑥, 𝑦, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧
76eqcomi 2828 . . . . . 6 ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨𝑥, 𝑦, 𝑧
87eqeq2i 2832 . . . . 5 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
98rexbii 3245 . . . 4 (∃𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
109rexbii 3245 . . 3 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
1110rexbii 3245 . 2 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
121, 5, 113bitri 299 1 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1530  wcel 2107  wrex 3137  cop 4565  cotp 4567   × cxp 5546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-ot 4568  df-iun 4912  df-opab 5120  df-xp 5554  df-rel 5555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator