MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp Structured version   Visualization version   GIF version

Theorem el2xptp 7967
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem el2xptp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5640 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩)
2 opeq1 4825 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
32eqeq2d 2742 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
43rexbidv 3156 . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54rexxp 5782 . 2 (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
6 df-ot 4585 . . . . . . 7 𝑥, 𝑦, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧
76eqcomi 2740 . . . . . 6 ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨𝑥, 𝑦, 𝑧
87eqeq2i 2744 . . . . 5 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
98rexbii 3079 . . . 4 (∃𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
109rexbii 3079 . . 3 (∃𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
1110rexbii 3079 . 2 (∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
121, 5, 113bitri 297 1 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wrex 3056  cop 4582  cotp 4584   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-iun 4943  df-opab 5154  df-xp 5622  df-rel 5623
This theorem is referenced by:  el2xpss  7969  ralxp3f  8067  frpoins3xp3g  8071  poxp3  8080  xpord3pred  8082  sexp3  8083
  Copyright terms: Public domain W3C validator