![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version |
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
Ref | Expression |
---|---|
el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5693 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩) | |
2 | opeq1 4868 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) | |
3 | 2 | eqeq2d 2737 | . . . 4 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
4 | 3 | rexbidv 3172 | . . 3 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
5 | 4 | rexxp 5835 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
6 | df-ot 4632 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ | |
7 | 6 | eqcomi 2735 | . . . . . 6 ⊢ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨𝑥, 𝑦, 𝑧⟩ |
8 | 7 | eqeq2i 2739 | . . . . 5 ⊢ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
9 | 8 | rexbii 3088 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
10 | 9 | rexbii 3088 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
11 | 10 | rexbii 3088 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
12 | 1, 5, 11 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ⟨cop 4629 ⟨cotp 4631 × cxp 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-iun 4992 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: el2xpss 8019 ralxp3f 8120 frpoins3xp3g 8124 poxp3 8133 xpord3pred 8135 sexp3 8136 |
Copyright terms: Public domain | W3C validator |