| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version | ||
| Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
| Ref | Expression |
|---|---|
| el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 5665 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉) | |
| 2 | opeq1 4840 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈𝑝, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
| 3 | 2 | eqeq2d 2741 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐴 = 〈𝑝, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 4 | 3 | rexbidv 3158 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 5 | 4 | rexxp 5809 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
| 6 | df-ot 4601 | . . . . . . 7 ⊢ 〈𝑥, 𝑦, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
| 7 | 6 | eqcomi 2739 | . . . . . 6 ⊢ 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈𝑥, 𝑦, 𝑧〉 |
| 8 | 7 | eqeq2i 2743 | . . . . 5 ⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 9 | 8 | rexbii 3077 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 10 | 9 | rexbii 3077 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 11 | 10 | rexbii 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 12 | 1, 5, 11 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 〈cop 4598 〈cotp 4600 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-iun 4960 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: el2xpss 8019 ralxp3f 8119 frpoins3xp3g 8123 poxp3 8132 xpord3pred 8134 sexp3 8135 |
| Copyright terms: Public domain | W3C validator |