| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version | ||
| Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
| Ref | Expression |
|---|---|
| el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 5662 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉) | |
| 2 | opeq1 4837 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈𝑝, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
| 3 | 2 | eqeq2d 2740 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐴 = 〈𝑝, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 4 | 3 | rexbidv 3157 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 5 | 4 | rexxp 5806 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
| 6 | df-ot 4598 | . . . . . . 7 ⊢ 〈𝑥, 𝑦, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
| 7 | 6 | eqcomi 2738 | . . . . . 6 ⊢ 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈𝑥, 𝑦, 𝑧〉 |
| 8 | 7 | eqeq2i 2742 | . . . . 5 ⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 9 | 8 | rexbii 3076 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 10 | 9 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 11 | 10 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| 12 | 1, 5, 11 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4595 〈cotp 4597 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-iun 4957 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: el2xpss 8016 ralxp3f 8116 frpoins3xp3g 8120 poxp3 8129 xpord3pred 8131 sexp3 8132 |
| Copyright terms: Public domain | W3C validator |