![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version |
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
Ref | Expression |
---|---|
el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5658 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩) | |
2 | opeq1 4831 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) | |
3 | 2 | eqeq2d 2748 | . . . 4 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
4 | 3 | rexbidv 3176 | . . 3 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
5 | 4 | rexxp 5799 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
6 | df-ot 4596 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ | |
7 | 6 | eqcomi 2746 | . . . . . 6 ⊢ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨𝑥, 𝑦, 𝑧⟩ |
8 | 7 | eqeq2i 2750 | . . . . 5 ⊢ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
9 | 8 | rexbii 3098 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
10 | 9 | rexbii 3098 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
11 | 10 | rexbii 3098 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
12 | 1, 5, 11 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 ⟨cop 4593 ⟨cotp 4595 × cxp 5632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-ot 4596 df-iun 4957 df-opab 5169 df-xp 5640 df-rel 5641 |
This theorem is referenced by: el2xpss 7970 ralxp3f 8070 frpoins3xp3g 8074 poxp3 8083 xpord3pred 8085 sexp3 8086 |
Copyright terms: Public domain | W3C validator |