![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2xptp | Structured version Visualization version GIF version |
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
Ref | Expression |
---|---|
el2xptp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5699 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩) | |
2 | opeq1 4872 | . . . . 5 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) | |
3 | 2 | eqeq2d 2743 | . . . 4 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
4 | 3 | rexbidv 3178 | . . 3 ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
5 | 4 | rexxp 5840 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
6 | df-ot 4636 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ | |
7 | 6 | eqcomi 2741 | . . . . . 6 ⊢ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨𝑥, 𝑦, 𝑧⟩ |
8 | 7 | eqeq2i 2745 | . . . . 5 ⊢ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
9 | 8 | rexbii 3094 | . . . 4 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
10 | 9 | rexbii 3094 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
11 | 10 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
12 | 1, 5, 11 | 3bitri 296 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = ⟨𝑥, 𝑦, 𝑧⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⟨cop 4633 ⟨cotp 4635 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-iun 4998 df-opab 5210 df-xp 5681 df-rel 5682 |
This theorem is referenced by: el2xpss 8019 ralxp3f 8119 frpoins3xp3g 8123 poxp3 8132 xpord3pred 8134 sexp3 8135 |
Copyright terms: Public domain | W3C validator |