| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnotaovb | Structured version Visualization version GIF version | ||
| Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6935. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| fnotaovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5696 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
| 2 | fnopafvb 47164 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
| 4 | 3 | 3impb 1114 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
| 5 | df-aov 47130 | . . 3 ⊢ ((𝐶𝐹𝐷)) = (𝐹'''〈𝐶, 𝐷〉) | |
| 6 | 5 | eqeq1i 2741 | . 2 ⊢ ( ((𝐶𝐹𝐷)) = 𝑅 ↔ (𝐹'''〈𝐶, 𝐷〉) = 𝑅) |
| 7 | df-ot 4615 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
| 8 | 7 | eleq1i 2826 | . 2 ⊢ (〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) |
| 9 | 4, 6, 8 | 3bitr4g 314 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4612 〈cotp 4614 × cxp 5657 Fn wfn 6531 '''cafv 47126 ((caov 47127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-aiota 47094 df-dfat 47128 df-afv 47129 df-aov 47130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |