![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnotaovb | Structured version Visualization version GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6944. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fnotaovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5709 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
2 | fnopafvb 46801 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) | |
3 | 1, 2 | sylan2 591 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
4 | 3 | 3impb 1112 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹'''〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
5 | df-aov 46767 | . . 3 ⊢ ((𝐶𝐹𝐷)) = (𝐹'''〈𝐶, 𝐷〉) | |
6 | 5 | eqeq1i 2731 | . 2 ⊢ ( ((𝐶𝐹𝐷)) = 𝑅 ↔ (𝐹'''〈𝐶, 𝐷〉) = 𝑅) |
7 | df-ot 4632 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
8 | 7 | eleq1i 2817 | . 2 ⊢ (〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 313 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 〈cop 4629 〈cotp 4631 × cxp 5670 Fn wfn 6538 '''cafv 46763 ((caov 46764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-uni 4906 df-int 4947 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-aiota 46731 df-dfat 46765 df-afv 46766 df-aov 46767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |