Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnotaovb Structured version   Visualization version   GIF version

Theorem fnotaovb 47113
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6974. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fnotaovb ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Proof of Theorem fnotaovb
StepHypRef Expression
1 opelxpi 5737 . . . 4 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 fnopafvb 47070 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
31, 2sylan2 592 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
433impb 1115 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹))
5 df-aov 47036 . . 3 ((𝐶𝐹𝐷)) = (𝐹'''⟨𝐶, 𝐷⟩)
65eqeq1i 2745 . 2 ( ((𝐶𝐹𝐷)) = 𝑅 ↔ (𝐹'''⟨𝐶, 𝐷⟩) = 𝑅)
7 df-ot 4657 . . 3 𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅
87eleq1i 2835 . 2 (⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)
94, 6, 83bitr4g 314 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cop 4654  cotp 4656   × cxp 5698   Fn wfn 6568  '''cafv 47032   ((caov 47033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035  df-aov 47036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator