![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnotaovb | Structured version Visualization version GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6956. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fnotaovb | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5719 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) | |
2 | fnopafvb 46582 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)) | |
3 | 1, 2 | sylan2 591 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)) |
4 | 3 | 3impb 1112 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹'''⟨𝐶, 𝐷⟩) = 𝑅 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹)) |
5 | df-aov 46548 | . . 3 ⊢ ((𝐶𝐹𝐷)) = (𝐹'''⟨𝐶, 𝐷⟩) | |
6 | 5 | eqeq1i 2733 | . 2 ⊢ ( ((𝐶𝐹𝐷)) = 𝑅 ↔ (𝐹'''⟨𝐶, 𝐷⟩) = 𝑅) |
7 | df-ot 4641 | . . 3 ⊢ ⟨𝐶, 𝐷, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ | |
8 | 7 | eleq1i 2820 | . 2 ⊢ (⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹 ↔ ⟨⟨𝐶, 𝐷⟩, 𝑅⟩ ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 313 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⟨cop 4638 ⟨cotp 4640 × cxp 5680 Fn wfn 6548 '''cafv 46544 ((caov 46545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-aiota 46512 df-dfat 46546 df-afv 46547 df-aov 46548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |