MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot2ndg Structured version   Visualization version   GIF version

Theorem ot2ndg 7983
Description: Extract the second member of an ordered triple. (See ot1stg 7982 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 4598 . . . . . 6 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6861 . . . . 5 (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5424 . . . . . 6 𝐴, 𝐵⟩ ∈ V
4 op1stg 7980 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
53, 4mpan 690 . . . . 5 (𝐶𝑋 → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
62, 5eqtrid 2776 . . . 4 (𝐶𝑋 → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
76fveq2d 6862 . . 3 (𝐶𝑋 → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (2nd ‘⟨𝐴, 𝐵⟩))
8 op2ndg 7981 . . 3 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
97, 8sylan9eqr 2786 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
1093impa 1109 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cotp 4597  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  oteqimp  7987  el2xptp0  8015  sbcoteq1a  8030  xpord3lem  8128  splval  14716  mamufval  22279  msrval  35525  mapdhval  41718  hdmap1val  41792
  Copyright terms: Public domain W3C validator