![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered triple. (See ot1stg 7991 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
Ref | Expression |
---|---|
ot2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4636 | . . . . . 6 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | 1 | fveq2i 6893 | . . . . 5 ⊢ (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) |
3 | opex 5463 | . . . . . 6 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
4 | op1stg 7989 | . . . . . 6 ⊢ ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩) | |
5 | 3, 4 | mpan 686 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩) |
6 | 2, 5 | eqtrid 2782 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩) |
7 | 6 | fveq2d 6894 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (2nd ‘⟨𝐴, 𝐵⟩)) |
8 | op2ndg 7990 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵) | |
9 | 7, 8 | sylan9eqr 2792 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵) |
10 | 9 | 3impa 1108 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⟨cop 4633 ⟨cotp 4635 ‘cfv 6542 1st c1st 7975 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: oteqimp 7996 el2xptp0 8024 sbcoteq1a 8039 xpord3lem 8137 splval 14705 mamufval 22107 msrval 34827 mapdhval 40898 hdmap1val 40972 |
Copyright terms: Public domain | W3C validator |