![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered triple. (See ot1stg 7982 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
Ref | Expression |
---|---|
ot2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4629 | . . . . . 6 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 6884 | . . . . 5 ⊢ (1st ‘〈𝐴, 𝐵, 𝐶〉) = (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opex 5454 | . . . . . 6 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
4 | op1stg 7980 | . . . . . 6 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) | |
5 | 3, 4 | mpan 687 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) |
6 | 2, 5 | eqtrid 2776 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈𝐴, 𝐵, 𝐶〉) = 〈𝐴, 𝐵〉) |
7 | 6 | fveq2d 6885 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = (2nd ‘〈𝐴, 𝐵〉)) |
8 | op2ndg 7981 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
9 | 7, 8 | sylan9eqr 2786 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) |
10 | 9 | 3impa 1107 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 〈cop 4626 〈cotp 4628 ‘cfv 6533 1st c1st 7966 2nd c2nd 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-ot 4629 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fv 6541 df-1st 7968 df-2nd 7969 |
This theorem is referenced by: oteqimp 7987 el2xptp0 8015 sbcoteq1a 8030 xpord3lem 8129 splval 14697 mamufval 22197 msrval 34984 mapdhval 41051 hdmap1val 41125 |
Copyright terms: Public domain | W3C validator |