Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot2ndg Structured version   Visualization version   GIF version

Theorem ot2ndg 7706
 Description: Extract the second member of an ordered triple. (See ot1stg 7705 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 4529 . . . . . 6 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6659 . . . . 5 (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5322 . . . . . 6 𝐴, 𝐵⟩ ∈ V
4 op1stg 7703 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
53, 4mpan 690 . . . . 5 (𝐶𝑋 → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
62, 5syl5eq 2806 . . . 4 (𝐶𝑋 → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
76fveq2d 6660 . . 3 (𝐶𝑋 → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (2nd ‘⟨𝐴, 𝐵⟩))
8 op2ndg 7704 . . 3 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
97, 8sylan9eqr 2816 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
1093impa 1108 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  Vcvv 3410  ⟨cop 4526  ⟨cotp 4528  ‘cfv 6333  1st c1st 7689  2nd c2nd 7690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-sn 4521  df-pr 4523  df-op 4527  df-ot 4529  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-iota 6292  df-fun 6335  df-fv 6341  df-1st 7691  df-2nd 7692 This theorem is referenced by:  oteqimp  7710  el2xptp0  7738  splval  14150  mamufval  21077  msrval  33006  mapdhval  39290  hdmap1val  39364
 Copyright terms: Public domain W3C validator