![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version |
Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpstrcl | ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4377 | . . 3 ⊢ 〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 | |
2 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
3 | 2 | mpstssv 31953 | . . . 4 ⊢ 𝑃 ⊆ ((V × V) × V) |
4 | 3 | sseli 3794 | . . 3 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈𝐷, 𝐻, 𝐴〉 ∈ ((V × V) × V)) |
5 | 1, 4 | syl5eqelr 2883 | . 2 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V)) |
6 | opelxp 5348 | . . . 4 ⊢ (〈𝐷, 𝐻〉 ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V)) | |
7 | 6 | anbi1i 618 | . . 3 ⊢ ((〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) |
8 | opelxp 5348 | . . 3 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V)) | |
9 | df-3an 1110 | . . 3 ⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) | |
10 | 7, 8, 9 | 3bitr4i 295 | . 2 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
11 | 5, 10 | sylib 210 | 1 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 〈cop 4374 〈cotp 4376 × cxp 5310 ‘cfv 6101 mPreStcmpst 31887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-ot 4377 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-mpst 31907 |
This theorem is referenced by: elmsta 31962 mclsax 31983 |
Copyright terms: Public domain | W3C validator |