| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version | ||
| Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpstrcl | ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4610 | . . 3 ⊢ 〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 | |
| 2 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 3 | 2 | mpstssv 35561 | . . . 4 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 4 | 3 | sseli 3954 | . . 3 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈𝐷, 𝐻, 𝐴〉 ∈ ((V × V) × V)) |
| 5 | 1, 4 | eqeltrrid 2839 | . 2 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V)) |
| 6 | opelxp 5690 | . . . 4 ⊢ (〈𝐷, 𝐻〉 ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V)) | |
| 7 | 6 | anbi1i 624 | . . 3 ⊢ ((〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) |
| 8 | opelxp 5690 | . . 3 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V)) | |
| 9 | df-3an 1088 | . . 3 ⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| 11 | 5, 10 | sylib 218 | 1 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 〈cotp 4609 × cxp 5652 ‘cfv 6531 mPreStcmpst 35495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-mpst 35515 |
| This theorem is referenced by: elmsta 35570 mclsax 35591 |
| Copyright terms: Public domain | W3C validator |