| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version | ||
| Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpstrcl | ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4598 | . . 3 ⊢ 〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 | |
| 2 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 3 | 2 | mpstssv 35526 | . . . 4 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 4 | 3 | sseli 3942 | . . 3 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈𝐷, 𝐻, 𝐴〉 ∈ ((V × V) × V)) |
| 5 | 1, 4 | eqeltrrid 2833 | . 2 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V)) |
| 6 | opelxp 5674 | . . . 4 ⊢ (〈𝐷, 𝐻〉 ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V)) | |
| 7 | 6 | anbi1i 624 | . . 3 ⊢ ((〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) |
| 8 | opelxp 5674 | . . 3 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V)) | |
| 9 | df-3an 1088 | . . 3 ⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| 11 | 5, 10 | sylib 218 | 1 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 〈cotp 4597 × cxp 5636 ‘cfv 6511 mPreStcmpst 35460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-mpst 35480 |
| This theorem is referenced by: elmsta 35535 mclsax 35556 |
| Copyright terms: Public domain | W3C validator |