![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version |
Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | β’ π = (mPreStβπ) |
Ref | Expression |
---|---|
mpstrcl | β’ (β¨π·, π», π΄β© β π β (π· β V β§ π» β V β§ π΄ β V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4638 | . . 3 β’ β¨π·, π», π΄β© = β¨β¨π·, π»β©, π΄β© | |
2 | mpstssv.p | . . . . 5 β’ π = (mPreStβπ) | |
3 | 2 | mpstssv 34530 | . . . 4 β’ π β ((V Γ V) Γ V) |
4 | 3 | sseli 3979 | . . 3 β’ (β¨π·, π», π΄β© β π β β¨π·, π», π΄β© β ((V Γ V) Γ V)) |
5 | 1, 4 | eqeltrrid 2839 | . 2 β’ (β¨π·, π», π΄β© β π β β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ V)) |
6 | opelxp 5713 | . . . 4 β’ (β¨π·, π»β© β (V Γ V) β (π· β V β§ π» β V)) | |
7 | 6 | anbi1i 625 | . . 3 β’ ((β¨π·, π»β© β (V Γ V) β§ π΄ β V) β ((π· β V β§ π» β V) β§ π΄ β V)) |
8 | opelxp 5713 | . . 3 β’ (β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ V) β (β¨π·, π»β© β (V Γ V) β§ π΄ β V)) | |
9 | df-3an 1090 | . . 3 β’ ((π· β V β§ π» β V β§ π΄ β V) β ((π· β V β§ π» β V) β§ π΄ β V)) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 β’ (β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ V) β (π· β V β§ π» β V β§ π΄ β V)) |
11 | 5, 10 | sylib 217 | 1 β’ (β¨π·, π», π΄β© β π β (π· β V β§ π» β V β§ π΄ β V)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 Vcvv 3475 β¨cop 4635 β¨cotp 4637 Γ cxp 5675 βcfv 6544 mPreStcmpst 34464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-mpst 34484 |
This theorem is referenced by: elmsta 34539 mclsax 34560 |
Copyright terms: Public domain | W3C validator |