![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version |
Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpstrcl | ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4657 | . . 3 ⊢ 〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 | |
2 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
3 | 2 | mpstssv 35507 | . . . 4 ⊢ 𝑃 ⊆ ((V × V) × V) |
4 | 3 | sseli 4004 | . . 3 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈𝐷, 𝐻, 𝐴〉 ∈ ((V × V) × V)) |
5 | 1, 4 | eqeltrrid 2849 | . 2 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V)) |
6 | opelxp 5736 | . . . 4 ⊢ (〈𝐷, 𝐻〉 ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V)) | |
7 | 6 | anbi1i 623 | . . 3 ⊢ ((〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) |
8 | opelxp 5736 | . . 3 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V)) | |
9 | df-3an 1089 | . . 3 ⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
11 | 5, 10 | sylib 218 | 1 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 〈cotp 4656 × cxp 5698 ‘cfv 6573 mPreStcmpst 35441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mpst 35461 |
This theorem is referenced by: elmsta 35516 mclsax 35537 |
Copyright terms: Public domain | W3C validator |