Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstrcl Structured version   Visualization version   GIF version

Theorem mpstrcl 33403
Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstrcl (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))

Proof of Theorem mpstrcl
StepHypRef Expression
1 df-ot 4567 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
2 mpstssv.p . . . . 5 𝑃 = (mPreSt‘𝑇)
32mpstssv 33401 . . . 4 𝑃 ⊆ ((V × V) × V)
43sseli 3913 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ((V × V) × V))
51, 4eqeltrrid 2844 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
6 opelxp 5616 . . . 4 (⟨𝐷, 𝐻⟩ ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V))
76anbi1i 623 . . 3 ((⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V))
8 opelxp 5616 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V))
9 df-3an 1087 . . 3 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V))
107, 8, 93bitr4i 302 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
115, 10sylib 217 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cotp 4566   × cxp 5578  cfv 6418  mPreStcmpst 33335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-mpst 33355
This theorem is referenced by:  elmsta  33410  mclsax  33431
  Copyright terms: Public domain W3C validator