| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstrcl | Structured version Visualization version GIF version | ||
| Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpstrcl | ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4584 | . . 3 ⊢ 〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 | |
| 2 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 3 | 2 | mpstssv 35604 | . . . 4 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 4 | 3 | sseli 3926 | . . 3 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈𝐷, 𝐻, 𝐴〉 ∈ ((V × V) × V)) |
| 5 | 1, 4 | eqeltrrid 2838 | . 2 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V)) |
| 6 | opelxp 5655 | . . . 4 ⊢ (〈𝐷, 𝐻〉 ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V)) | |
| 7 | 6 | anbi1i 624 | . . 3 ⊢ ((〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) |
| 8 | opelxp 5655 | . . 3 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (〈𝐷, 𝐻〉 ∈ (V × V) ∧ 𝐴 ∈ V)) | |
| 9 | df-3an 1088 | . . 3 ⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (〈〈𝐷, 𝐻〉, 𝐴〉 ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| 11 | 5, 10 | sylib 218 | 1 ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 〈cotp 4583 × cxp 5617 ‘cfv 6486 mPreStcmpst 35538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-ot 4584 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-mpst 35558 |
| This theorem is referenced by: elmsta 35613 mclsax 35634 |
| Copyright terms: Public domain | W3C validator |