![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot3rdg | Structured version Visualization version GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 8044 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdg | ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4657 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 6923 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opex 5484 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
4 | op2ndg 8043 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑉) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) | |
5 | 3, 4 | mpan 689 | . 2 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) |
6 | 2, 5 | eqtrid 2792 | 1 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 〈cotp 4656 ‘cfv 6573 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 |
This theorem is referenced by: oteqimp 8049 el2xptp0 8077 sbcoteq1a 8092 xpord3lem 8190 splval 14799 splcl 14800 ida2 18126 coa2 18136 mamufval 22417 msrval 35506 mapdhval 41681 hdmap1val 41755 |
Copyright terms: Public domain | W3C validator |