Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ot3rdg | Structured version Visualization version GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 7818 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdg | ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4567 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 6759 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opex 5373 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
4 | op2ndg 7817 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑉) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) | |
5 | 3, 4 | mpan 686 | . 2 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) |
6 | 2, 5 | eqtrid 2790 | 1 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 〈cotp 4566 ‘cfv 6418 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 |
This theorem is referenced by: oteqimp 7823 el2xptp0 7851 splval 14392 splcl 14393 ida2 17690 coa2 17700 mamufval 21444 msrval 33400 mapdhval 39665 hdmap1val 39739 |
Copyright terms: Public domain | W3C validator |