MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot3rdg Structured version   Visualization version   GIF version

Theorem ot3rdg 7820
Description: Extract the third member of an ordered triple. (See ot1stg 7818 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdg (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)

Proof of Theorem ot3rdg
StepHypRef Expression
1 df-ot 4567 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6759 . 2 (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5373 . . 3 𝐴, 𝐵⟩ ∈ V
4 op2ndg 7817 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
53, 4mpan 686 . 2 (𝐶𝑉 → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
62, 5eqtrid 2790 1 (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cotp 4566  cfv 6418  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-2nd 7805
This theorem is referenced by:  oteqimp  7823  el2xptp0  7851  splval  14392  splcl  14393  ida2  17690  coa2  17700  mamufval  21444  msrval  33400  mapdhval  39665  hdmap1val  39739
  Copyright terms: Public domain W3C validator