MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot3rdg Structured version   Visualization version   GIF version

Theorem ot3rdg 8046
Description: Extract the third member of an ordered triple. (See ot1stg 8044 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdg (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)

Proof of Theorem ot3rdg
StepHypRef Expression
1 df-ot 4657 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6923 . 2 (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5484 . . 3 𝐴, 𝐵⟩ ∈ V
4 op2ndg 8043 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
53, 4mpan 689 . 2 (𝐶𝑉 → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
62, 5eqtrid 2792 1 (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cotp 4656  cfv 6573  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031
This theorem is referenced by:  oteqimp  8049  el2xptp0  8077  sbcoteq1a  8092  xpord3lem  8190  splval  14799  splcl  14800  ida2  18126  coa2  18136  mamufval  22417  msrval  35506  mapdhval  41681  hdmap1val  41755
  Copyright terms: Public domain W3C validator