Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ot3rdg | Structured version Visualization version GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 7890 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdg | ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4580 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 6814 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opex 5398 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
4 | op2ndg 7889 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑉) → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 𝐶) |
6 | 2, 5 | eqtrid 2789 | 1 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 〈cop 4577 〈cotp 4579 ‘cfv 6465 2nd c2nd 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-iota 6417 df-fun 6467 df-fv 6473 df-2nd 7877 |
This theorem is referenced by: oteqimp 7895 el2xptp0 7923 splval 14536 splcl 14537 ida2 17844 coa2 17854 mamufval 21606 msrval 33605 mapdhval 39943 hdmap1val 40017 |
Copyright terms: Public domain | W3C validator |