![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot3rdg | Structured version Visualization version GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 7983 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdg | ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4630 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | 1 | fveq2i 6885 | . 2 ⊢ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) |
3 | opex 5455 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
4 | op2ndg 7982 | . . 3 ⊢ ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ 𝑉) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶) |
6 | 2, 5 | eqtrid 2776 | 1 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 ⟨cotp 4629 ‘cfv 6534 2nd c2nd 7968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-ot 4630 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-2nd 7970 |
This theorem is referenced by: oteqimp 7988 el2xptp0 8016 sbcoteq1a 8031 xpord3lem 8130 splval 14703 splcl 14704 ida2 18017 coa2 18027 mamufval 22231 msrval 35047 mapdhval 41099 hdmap1val 41173 |
Copyright terms: Public domain | W3C validator |