MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot3rdg Structured version   Visualization version   GIF version

Theorem ot3rdg 8009
Description: Extract the third member of an ordered triple. (See ot1stg 8007 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdg (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)

Proof of Theorem ot3rdg
StepHypRef Expression
1 df-ot 4638 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 6900 . 2 (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opex 5466 . . 3 𝐴, 𝐵⟩ ∈ V
4 op2ndg 8006 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑉) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
53, 4mpan 689 . 2 (𝐶𝑉 → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶)
62, 5eqtrid 2780 1 (𝐶𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3471  cop 4635  cotp 4637  cfv 6548  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fv 6556  df-2nd 7994
This theorem is referenced by:  oteqimp  8012  el2xptp0  8040  sbcoteq1a  8055  xpord3lem  8154  splval  14734  splcl  14735  ida2  18048  coa2  18058  mamufval  22300  msrval  35148  mapdhval  41197  hdmap1val  41271
  Copyright terms: Public domain W3C validator