![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot3rdg | Structured version Visualization version GIF version |
Description: Extract the third member of an ordered triple. (See ot1stg 7985 comment.) (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
ot3rdg | ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4636 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | 1 | fveq2i 6891 | . 2 ⊢ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) |
3 | opex 5463 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
4 | op2ndg 7984 | . . 3 ⊢ ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ 𝑉) → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶) | |
5 | 3, 4 | mpan 688 | . 2 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = 𝐶) |
6 | 2, 5 | eqtrid 2784 | 1 ⊢ (𝐶 ∈ 𝑉 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ⟨cotp 4635 ‘cfv 6540 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-2nd 7972 |
This theorem is referenced by: oteqimp 7990 el2xptp0 8018 sbcoteq1a 8033 xpord3lem 8131 splval 14697 splcl 14698 ida2 18005 coa2 18015 mamufval 21878 msrval 34517 mapdhval 40583 hdmap1val 40657 |
Copyright terms: Public domain | W3C validator |