MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ottpos Structured version   Visualization version   GIF version

Theorem ottpos 8176
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottpos (𝐶𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))

Proof of Theorem ottpos
StepHypRef Expression
1 brtpos 8175 . . 3 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
2 df-br 5096 . . 3 (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
3 df-br 5096 . . 3 (⟨𝐵, 𝐴𝐹𝐶 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
41, 2, 33bitr3g 313 . 2 (𝐶𝑉 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹))
5 df-ot 4588 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
65eleq1i 2819 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
7 df-ot 4588 . . 3 𝐵, 𝐴, 𝐶⟩ = ⟨⟨𝐵, 𝐴⟩, 𝐶
87eleq1i 2819 . 2 (⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
94, 6, 83bitr4g 314 1 (𝐶𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  cop 4585  cotp 4587   class class class wbr 5095  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-tpos 8166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator