| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ottpos | Structured version Visualization version GIF version | ||
| Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| ottpos | ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos 8223 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | |
| 2 | df-br 5116 | . . 3 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) | |
| 3 | df-br 5116 | . . 3 ⊢ (〈𝐵, 𝐴〉𝐹𝐶 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹)) |
| 5 | df-ot 4606 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 6 | 5 | eleq1i 2820 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) |
| 7 | df-ot 4606 | . . 3 ⊢ 〈𝐵, 𝐴, 𝐶〉 = 〈〈𝐵, 𝐴〉, 𝐶〉 | |
| 8 | 7 | eleq1i 2820 | . 2 ⊢ (〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) |
| 9 | 4, 6, 8 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 〈cop 4603 〈cotp 4605 class class class wbr 5115 tpos ctpos 8213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-ot 4606 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-fv 6527 df-tpos 8214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |