![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ottpos | Structured version Visualization version GIF version |
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
ottpos | ⊢ (𝐶 ∈ 𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos 8219 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶)) | |
2 | df-br 5149 | . . 3 ⊢ (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹) | |
3 | df-br 5149 | . . 3 ⊢ (⟨𝐵, 𝐴⟩𝐹𝐶 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹) | |
4 | 1, 2, 3 | 3bitr3g 312 | . 2 ⊢ (𝐶 ∈ 𝑉 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)) |
5 | df-ot 4637 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
6 | 5 | eleq1i 2824 | . 2 ⊢ (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹) |
7 | df-ot 4637 | . . 3 ⊢ ⟨𝐵, 𝐴, 𝐶⟩ = ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ | |
8 | 7 | eleq1i 2824 | . 2 ⊢ (⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 313 | 1 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ⟨cop 4634 ⟨cotp 4636 class class class wbr 5148 tpos ctpos 8209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-tpos 8210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |