| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ottpos | Structured version Visualization version GIF version | ||
| Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| ottpos | ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos 8241 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | |
| 2 | df-br 5124 | . . 3 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) | |
| 3 | df-br 5124 | . . 3 ⊢ (〈𝐵, 𝐴〉𝐹𝐶 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹)) |
| 5 | df-ot 4615 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 6 | 5 | eleq1i 2824 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) |
| 7 | df-ot 4615 | . . 3 ⊢ 〈𝐵, 𝐴, 𝐶〉 = 〈〈𝐵, 𝐴〉, 𝐶〉 | |
| 8 | 7 | eleq1i 2824 | . 2 ⊢ (〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) |
| 9 | 4, 6, 8 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 〈cop 4612 〈cotp 4614 class class class wbr 5123 tpos ctpos 8231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-fv 6548 df-tpos 8232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |