![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homadmcd | Structured version Visualization version GIF version |
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homadmcd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | 1 | homarel 17968 | . . . 4 ⊢ Rel (𝑋𝐻𝑌) |
3 | 1st2nd 8007 | . . . 4 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
4 | 2, 3 | mpan 688 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
5 | 1st2ndbr 8010 | . . . . . 6 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
6 | 2, 5 | mpan 688 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
7 | 1 | homa1 17969 | . . . . 5 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
9 | 8 | opeq1d 4872 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈(1st ‘𝐹), (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
10 | 4, 9 | eqtrd 2771 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
11 | df-ot 4631 | . 2 ⊢ 〈𝑋, 𝑌, (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉 | |
12 | 10, 11 | eqtr4di 2789 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 〈cop 4628 〈cotp 4630 class class class wbr 5141 Rel wrel 5674 ‘cfv 6532 (class class class)co 7393 1st c1st 7955 2nd c2nd 7956 Homachoma 17955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-ot 4631 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-1st 7957 df-2nd 7958 df-homa 17958 |
This theorem is referenced by: arwdmcd 17984 arwlid 18004 arwrid 18005 |
Copyright terms: Public domain | W3C validator |