MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadmcd Structured version   Visualization version   GIF version

Theorem homadmcd 17673
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homadmcd (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)

Proof of Theorem homadmcd
StepHypRef Expression
1 homahom.h . . . . 5 𝐻 = (Homa𝐶)
21homarel 17667 . . . 4 Rel (𝑋𝐻𝑌)
3 1st2nd 7853 . . . 4 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
42, 3mpan 686 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 1st2ndbr 7856 . . . . . 6 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
62, 5mpan 686 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
71homa1 17668 . . . . 5 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
98opeq1d 4807 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨(1st𝐹), (2nd𝐹)⟩ = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩)
104, 9eqtrd 2778 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩)
11 df-ot 4567 . 2 𝑋, 𝑌, (2nd𝐹)⟩ = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩
1210, 11eqtr4di 2797 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4564  cotp 4566   class class class wbr 5070  Rel wrel 5585  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-homa 17657
This theorem is referenced by:  arwdmcd  17683  arwlid  17703  arwrid  17704
  Copyright terms: Public domain W3C validator