| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homadmcd | Structured version Visualization version GIF version | ||
| Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homadmcd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | 1 | homarel 18005 | . . . 4 ⊢ Rel (𝑋𝐻𝑌) |
| 3 | 1st2nd 8021 | . . . 4 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 1st2ndbr 8024 | . . . . . 6 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 6 | 2, 5 | mpan 690 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 7 | 1 | homa1 18006 | . . . . 5 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 9 | 8 | opeq1d 4846 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈(1st ‘𝐹), (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
| 10 | 4, 9 | eqtrd 2765 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
| 11 | df-ot 4601 | . 2 ⊢ 〈𝑋, 𝑌, (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉 | |
| 12 | 10, 11 | eqtr4di 2783 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 〈cotp 4600 class class class wbr 5110 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Homachoma 17992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 df-homa 17995 |
| This theorem is referenced by: arwdmcd 18021 arwlid 18041 arwrid 18042 |
| Copyright terms: Public domain | W3C validator |