MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadmcd Structured version   Visualization version   GIF version

Theorem homadmcd 18096
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homadmcd (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)

Proof of Theorem homadmcd
StepHypRef Expression
1 homahom.h . . . . 5 𝐻 = (Homa𝐶)
21homarel 18090 . . . 4 Rel (𝑋𝐻𝑌)
3 1st2nd 8063 . . . 4 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
42, 3mpan 690 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5 1st2ndbr 8066 . . . . . 6 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
62, 5mpan 690 . . . . 5 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
71homa1 18091 . . . . 5 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
98opeq1d 4884 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ⟨(1st𝐹), (2nd𝐹)⟩ = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩)
104, 9eqtrd 2775 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩)
11 df-ot 4640 . 2 𝑋, 𝑌, (2nd𝐹)⟩ = ⟨⟨𝑋, 𝑌⟩, (2nd𝐹)⟩
1210, 11eqtr4di 2793 1 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cop 4637  cotp 4639   class class class wbr 5148  Rel wrel 5694  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Homachoma 18077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-homa 18080
This theorem is referenced by:  arwdmcd  18106  arwlid  18126  arwrid  18127
  Copyright terms: Public domain W3C validator