| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homadmcd | Structured version Visualization version GIF version | ||
| Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homadmcd | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | 1 | homarel 17940 | . . . 4 ⊢ Rel (𝑋𝐻𝑌) |
| 3 | 1st2nd 7971 | . . . 4 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 1st2ndbr 7974 | . . . . . 6 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 6 | 2, 5 | mpan 690 | . . . . 5 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 7 | 1 | homa1 17941 | . . . . 5 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 9 | 8 | opeq1d 4831 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 〈(1st ‘𝐹), (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
| 10 | 4, 9 | eqtrd 2766 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉) |
| 11 | df-ot 4585 | . 2 ⊢ 〈𝑋, 𝑌, (2nd ‘𝐹)〉 = 〈〈𝑋, 𝑌〉, (2nd ‘𝐹)〉 | |
| 12 | 10, 11 | eqtr4di 2784 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 〈cotp 4584 class class class wbr 5091 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Homachoma 17927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-homa 17930 |
| This theorem is referenced by: arwdmcd 17956 arwlid 17976 arwrid 17977 |
| Copyright terms: Public domain | W3C validator |