Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpst123 | Structured version Visualization version GIF version |
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpst123 | ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpstssv.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | 1 | mpstssv 33401 | . . 3 ⊢ 𝑃 ⊆ ((V × V) × V) |
3 | 2 | sseli 3913 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ ((V × V) × V)) |
4 | 1st2nd2 7843 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
5 | xp1st 7836 | . . . . . 6 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) ∈ (V × V)) | |
6 | 1st2nd2 7843 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ (V × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) |
8 | 7 | opeq1d 4807 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
9 | 4, 8 | eqtrd 2778 | . . 3 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
10 | df-ot 4567 | . . 3 ⊢ 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉 | |
11 | 9, 10 | eqtr4di 2797 | . 2 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
12 | 3, 11 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 〈cotp 4566 × cxp 5578 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 mPreStcmpst 33335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 df-mpst 33355 |
This theorem is referenced by: msrf 33404 msrid 33407 mthmpps 33444 |
Copyright terms: Public domain | W3C validator |