Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpst123 Structured version   Visualization version   GIF version

Theorem mpst123 32861
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpst123 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)

Proof of Theorem mpst123
StepHypRef Expression
1 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
21mpstssv 32860 . . 3 𝑃 ⊆ ((V × V) × V)
32sseli 3938 . 2 (𝑋𝑃𝑋 ∈ ((V × V) × V))
4 1st2nd2 7714 . . . 4 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 xp1st 7707 . . . . . 6 (𝑋 ∈ ((V × V) × V) → (1st𝑋) ∈ (V × V))
6 1st2nd2 7714 . . . . . 6 ((1st𝑋) ∈ (V × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
75, 6syl 17 . . . . 5 (𝑋 ∈ ((V × V) × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
87opeq1d 4784 . . . 4 (𝑋 ∈ ((V × V) × V) → ⟨(1st𝑋), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
94, 8eqtrd 2857 . . 3 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
10 df-ot 4548 . . 3 ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩
119, 10eqtr4di 2875 . 2 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
123, 11syl 17 1 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  Vcvv 3469  cop 4545  cotp 4547   × cxp 5530  cfv 6334  1st c1st 7673  2nd c2nd 7674  mPreStcmpst 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-ot 4548  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-iota 6293  df-fun 6336  df-fv 6342  df-1st 7675  df-2nd 7676  df-mpst 32814
This theorem is referenced by:  msrf  32863  msrid  32866  mthmpps  32903
  Copyright terms: Public domain W3C validator