Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpst123 Structured version   Visualization version   GIF version

Theorem mpst123 35527
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpst123 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)

Proof of Theorem mpst123
StepHypRef Expression
1 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
21mpstssv 35526 . . 3 𝑃 ⊆ ((V × V) × V)
32sseli 3944 . 2 (𝑋𝑃𝑋 ∈ ((V × V) × V))
4 1st2nd2 8009 . . . 4 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 xp1st 8002 . . . . . 6 (𝑋 ∈ ((V × V) × V) → (1st𝑋) ∈ (V × V))
6 1st2nd2 8009 . . . . . 6 ((1st𝑋) ∈ (V × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
75, 6syl 17 . . . . 5 (𝑋 ∈ ((V × V) × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
87opeq1d 4845 . . . 4 (𝑋 ∈ ((V × V) × V) → ⟨(1st𝑋), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
94, 8eqtrd 2765 . . 3 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
10 df-ot 4600 . . 3 ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩
119, 10eqtr4di 2783 . 2 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
123, 11syl 17 1 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597  cotp 4599   × cxp 5638  cfv 6513  1st c1st 7968  2nd c2nd 7969  mPreStcmpst 35460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fv 6521  df-1st 7970  df-2nd 7971  df-mpst 35480
This theorem is referenced by:  msrf  35529  msrid  35532  mthmpps  35569
  Copyright terms: Public domain W3C validator