![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpst123 | Structured version Visualization version GIF version |
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpst123 | ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpstssv.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | 1 | mpstssv 35507 | . . 3 ⊢ 𝑃 ⊆ ((V × V) × V) |
3 | 2 | sseli 4004 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ ((V × V) × V)) |
4 | 1st2nd2 8069 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
5 | xp1st 8062 | . . . . . 6 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) ∈ (V × V)) | |
6 | 1st2nd2 8069 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ (V × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) |
8 | 7 | opeq1d 4903 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
9 | 4, 8 | eqtrd 2780 | . . 3 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
10 | df-ot 4657 | . . 3 ⊢ 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉 | |
11 | 9, 10 | eqtr4di 2798 | . 2 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
12 | 3, 11 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 〈cotp 4656 × cxp 5698 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 mPreStcmpst 35441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 df-mpst 35461 |
This theorem is referenced by: msrf 35510 msrid 35513 mthmpps 35550 |
Copyright terms: Public domain | W3C validator |