Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpst123 Structured version   Visualization version   GIF version

Theorem mpst123 33402
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpst123 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)

Proof of Theorem mpst123
StepHypRef Expression
1 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
21mpstssv 33401 . . 3 𝑃 ⊆ ((V × V) × V)
32sseli 3913 . 2 (𝑋𝑃𝑋 ∈ ((V × V) × V))
4 1st2nd2 7843 . . . 4 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 xp1st 7836 . . . . . 6 (𝑋 ∈ ((V × V) × V) → (1st𝑋) ∈ (V × V))
6 1st2nd2 7843 . . . . . 6 ((1st𝑋) ∈ (V × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
75, 6syl 17 . . . . 5 (𝑋 ∈ ((V × V) × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
87opeq1d 4807 . . . 4 (𝑋 ∈ ((V × V) × V) → ⟨(1st𝑋), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
94, 8eqtrd 2778 . . 3 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
10 df-ot 4567 . . 3 ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩
119, 10eqtr4di 2797 . 2 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
123, 11syl 17 1 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cotp 4566   × cxp 5578  cfv 6418  1st c1st 7802  2nd c2nd 7803  mPreStcmpst 33335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805  df-mpst 33355
This theorem is referenced by:  msrf  33404  msrid  33407  mthmpps  33444
  Copyright terms: Public domain W3C validator