| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpst123 | Structured version Visualization version GIF version | ||
| Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpst123 | ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpstssv.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | 1 | mpstssv 35581 | . . 3 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 3 | 2 | sseli 3930 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ ((V × V) × V)) |
| 4 | 1st2nd2 7960 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 5 | xp1st 7953 | . . . . . 6 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) ∈ (V × V)) | |
| 6 | 1st2nd2 7960 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ (V × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) |
| 8 | 7 | opeq1d 4831 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
| 9 | 4, 8 | eqtrd 2766 | . . 3 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
| 10 | df-ot 4585 | . . 3 ⊢ 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉 | |
| 11 | 9, 10 | eqtr4di 2784 | . 2 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| 12 | 3, 11 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 〈cotp 4584 × cxp 5614 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 mPreStcmpst 35515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 df-mpst 35535 |
| This theorem is referenced by: msrf 35584 msrid 35587 mthmpps 35624 |
| Copyright terms: Public domain | W3C validator |