| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpst123 | Structured version Visualization version GIF version | ||
| Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpst123 | ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpstssv.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | 1 | mpstssv 35485 | . . 3 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 3 | 2 | sseli 3961 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ ((V × V) × V)) |
| 4 | 1st2nd2 8036 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 5 | xp1st 8029 | . . . . . 6 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) ∈ (V × V)) | |
| 6 | 1st2nd2 8036 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ (V × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ ((V × V) × V) → (1st ‘𝑋) = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉) |
| 8 | 7 | opeq1d 4861 | . . . 4 ⊢ (𝑋 ∈ ((V × V) × V) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
| 9 | 4, 8 | eqtrd 2769 | . . 3 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉) |
| 10 | df-ot 4617 | . . 3 ⊢ 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉 = 〈〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋))〉, (2nd ‘𝑋)〉 | |
| 11 | 9, 10 | eqtr4di 2787 | . 2 ⊢ (𝑋 ∈ ((V × V) × V) → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| 12 | 3, 11 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 〈cop 4614 〈cotp 4616 × cxp 5665 ‘cfv 6542 1st c1st 7995 2nd c2nd 7996 mPreStcmpst 35419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fv 6550 df-1st 7997 df-2nd 7998 df-mpst 35439 |
| This theorem is referenced by: msrf 35488 msrid 35491 mthmpps 35528 |
| Copyright terms: Public domain | W3C validator |