MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp0 Structured version   Visualization version   GIF version

Theorem el2xptp0 8015
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp0 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))

Proof of Theorem el2xptp0
StepHypRef Expression
1 xp1st 8000 . . . . . 6 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (1st𝐴) ∈ (𝑈 × 𝑉))
21ad2antrl 728 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) ∈ (𝑈 × 𝑉))
3 3simpa 1148 . . . . . . 7 (((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
43adantl 481 . . . . . 6 ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
54adantl 481 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
6 eqopi 8004 . . . . 5 (((1st𝐴) ∈ (𝑈 × 𝑉) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌)) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
72, 5, 6syl2anc 584 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
8 simprr3 1224 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (2nd𝐴) = 𝑍)
97, 8jca 511 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍))
10 df-ot 4598 . . . . . 6 𝑋, 𝑌, 𝑍⟩ = ⟨⟨𝑋, 𝑌⟩, 𝑍
1110eqeq2i 2742 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ 𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩)
12 eqop 8010 . . . . 5 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1311, 12bitrid 283 . . . 4 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1413ad2antrl 728 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
159, 14mpbird 257 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩)
16 opelxpi 5675 . . . . . . . 8 ((𝑋𝑈𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
17163adant3 1132 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
18 simp3 1138 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
1917, 18opelxpd 5677 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2010, 19eqeltrid 2832 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2120adantr 480 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
22 eleq1 2816 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2322adantl 481 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2421, 23mpbird 257 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → 𝐴 ∈ ((𝑈 × 𝑉) × 𝑊))
25 2fveq3 6863 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
26 ot1stg 7982 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑋)
2725, 26sylan9eqr 2786 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (1st ‘(1st𝐴)) = 𝑋)
28 2fveq3 6863 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
29 ot2ndg 7983 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑌)
3028, 29sylan9eqr 2786 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd ‘(1st𝐴)) = 𝑌)
31 fveq2 6858 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd𝐴) = (2nd ‘⟨𝑋, 𝑌, 𝑍⟩))
32 ot3rdg 7984 . . . . . 6 (𝑍𝑊 → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
33323ad2ant3 1135 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
3431, 33sylan9eqr 2786 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd𝐴) = 𝑍)
3527, 30, 343jca 1128 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))
3624, 35jca 511 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)))
3715, 36impbida 800 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595  cotp 4597   × cxp 5636  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator