MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp0 Structured version   Visualization version   GIF version

Theorem el2xptp0 7412
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp0 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))

Proof of Theorem el2xptp0
StepHypRef Expression
1 xp1st 7398 . . . . . 6 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (1st𝐴) ∈ (𝑈 × 𝑉))
21ad2antrl 719 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) ∈ (𝑈 × 𝑉))
3 3simpa 1178 . . . . . . 7 (((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
43adantl 473 . . . . . 6 ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
54adantl 473 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
6 eqopi 7402 . . . . 5 (((1st𝐴) ∈ (𝑈 × 𝑉) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌)) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
72, 5, 6syl2anc 579 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
8 simprr3 1291 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (2nd𝐴) = 𝑍)
97, 8jca 507 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍))
10 df-ot 4343 . . . . . 6 𝑋, 𝑌, 𝑍⟩ = ⟨⟨𝑋, 𝑌⟩, 𝑍
1110eqeq2i 2777 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ 𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩)
12 eqop 7408 . . . . 5 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1311, 12syl5bb 274 . . . 4 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1413ad2antrl 719 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
159, 14mpbird 248 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩)
16 opelxpi 5314 . . . . . . . 8 ((𝑋𝑈𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
17163adant3 1162 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
18 simp3 1168 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
19 opelxp 5313 . . . . . . 7 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊) ↔ (⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉) ∧ 𝑍𝑊))
2017, 18, 19sylanbrc 578 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2110, 20syl5eqel 2848 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2221adantr 472 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
23 eleq1 2832 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2423adantl 473 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2522, 24mpbird 248 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → 𝐴 ∈ ((𝑈 × 𝑉) × 𝑊))
26 2fveq3 6380 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
27 ot1stg 7380 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑋)
2826, 27sylan9eqr 2821 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (1st ‘(1st𝐴)) = 𝑋)
29 2fveq3 6380 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
30 ot2ndg 7381 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑌)
3129, 30sylan9eqr 2821 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd ‘(1st𝐴)) = 𝑌)
32 fveq2 6375 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd𝐴) = (2nd ‘⟨𝑋, 𝑌, 𝑍⟩))
33 ot3rdg 7382 . . . . . 6 (𝑍𝑊 → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
34333ad2ant3 1165 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
3532, 34sylan9eqr 2821 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd𝐴) = 𝑍)
3628, 31, 353jca 1158 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))
3725, 36jca 507 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)))
3815, 37impbida 835 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  cop 4340  cotp 4342   × cxp 5275  cfv 6068  1st c1st 7364  2nd c2nd 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-ot 4343  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-iota 6031  df-fun 6070  df-fv 6076  df-1st 7366  df-2nd 7367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator