Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1val Structured version   Visualization version   GIF version

Theorem hdmap1val 40657
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval 40583.) TODO: change 𝐼 = (π‘₯ ∈ V ↦... to (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘Œ > ) =... in e.g. mapdh8 40647 to shorten proofs with no $d on π‘₯. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHypβ€˜πΎ)
hdmap1fval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmap1fval.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmap1fval.s βˆ’ = (-gβ€˜π‘ˆ)
hdmap1fval.o 0 = (0gβ€˜π‘ˆ)
hdmap1fval.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmap1fval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmap1fval.d 𝐷 = (Baseβ€˜πΆ)
hdmap1fval.r 𝑅 = (-gβ€˜πΆ)
hdmap1fval.q 𝑄 = (0gβ€˜πΆ)
hdmap1fval.j 𝐽 = (LSpanβ€˜πΆ)
hdmap1fval.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
hdmap1fval.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmap1fval.k (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
hdmap1val.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
hdmap1val.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
hdmap1val.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
Assertion
Ref Expression
hdmap1val (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if(π‘Œ = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)})))))
Distinct variable groups:   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   π‘ˆ,β„Ž   β„Ž,𝑉   β„Ž,𝐹   β„Ž,𝑋   β„Ž,π‘Œ   πœ‘,β„Ž
Allowed substitution hints:   𝐴(β„Ž)   𝑄(β„Ž)   𝑅(β„Ž)   𝐻(β„Ž)   𝐼(β„Ž)   𝐾(β„Ž)   βˆ’ (β„Ž)   π‘Š(β„Ž)   0 (β„Ž)

Proof of Theorem hdmap1val
StepHypRef Expression
1 hdmap1val.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 hdmap1fval.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hdmap1fval.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
4 hdmap1fval.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
5 hdmap1fval.o . . 3 0 = (0gβ€˜π‘ˆ)
6 hdmap1fval.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
7 hdmap1fval.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
8 hdmap1fval.d . . 3 𝐷 = (Baseβ€˜πΆ)
9 hdmap1fval.r . . 3 𝑅 = (-gβ€˜πΆ)
10 hdmap1fval.q . . 3 𝑄 = (0gβ€˜πΆ)
11 hdmap1fval.j . . 3 𝐽 = (LSpanβ€˜πΆ)
12 hdmap1fval.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
13 hdmap1fval.i . . 3 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
14 hdmap1fval.k . . 3 (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
15 df-ot 4636 . . . 4 βŸ¨π‘‹, 𝐹, π‘ŒβŸ© = βŸ¨βŸ¨π‘‹, 𝐹⟩, π‘ŒβŸ©
16 hdmap1val.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑉)
17 hdmap1val.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ 𝐷)
18 opelxp 5711 . . . . . 6 (βŸ¨π‘‹, 𝐹⟩ ∈ (𝑉 Γ— 𝐷) ↔ (𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷))
1916, 17, 18sylanbrc 583 . . . . 5 (πœ‘ β†’ βŸ¨π‘‹, 𝐹⟩ ∈ (𝑉 Γ— 𝐷))
20 hdmap1val.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑉)
21 opelxp 5711 . . . . 5 (βŸ¨βŸ¨π‘‹, 𝐹⟩, π‘ŒβŸ© ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↔ (βŸ¨π‘‹, 𝐹⟩ ∈ (𝑉 Γ— 𝐷) ∧ π‘Œ ∈ 𝑉))
2219, 20, 21sylanbrc 583 . . . 4 (πœ‘ β†’ βŸ¨βŸ¨π‘‹, 𝐹⟩, π‘ŒβŸ© ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉))
2315, 22eqeltrid 2837 . . 3 (πœ‘ β†’ βŸ¨π‘‹, 𝐹, π‘ŒβŸ© ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23hdmap1vallem 40656 . 2 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if((2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)})))))
25 ot3rdg 7987 . . . . 5 (π‘Œ ∈ 𝑉 β†’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = π‘Œ)
2620, 25syl 17 . . . 4 (πœ‘ β†’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = π‘Œ)
2726eqeq1d 2734 . . 3 (πœ‘ β†’ ((2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 0 ↔ π‘Œ = 0 ))
2826sneqd 4639 . . . . . . 7 (πœ‘ β†’ {(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)} = {π‘Œ})
2928fveq2d 6892 . . . . . 6 (πœ‘ β†’ (π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)}) = (π‘β€˜{π‘Œ}))
3029fveqeq2d 6896 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)})) = (π½β€˜{β„Ž}) ↔ (π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž})))
31 ot1stg 7985 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ π‘Œ ∈ 𝑉) β†’ (1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) = 𝑋)
3216, 17, 20, 31syl3anc 1371 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) = 𝑋)
3332, 26oveq12d 7423 . . . . . . . . 9 (πœ‘ β†’ ((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) = (𝑋 βˆ’ π‘Œ))
3433sneqd 4639 . . . . . . . 8 (πœ‘ β†’ {((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))} = {(𝑋 βˆ’ π‘Œ)})
3534fveq2d 6892 . . . . . . 7 (πœ‘ β†’ (π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))}) = (π‘β€˜{(𝑋 βˆ’ π‘Œ)}))
3635fveq2d 6892 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})))
37 ot2ndg 7986 . . . . . . . . . 10 ((𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ π‘Œ ∈ 𝑉) β†’ (2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) = 𝐹)
3816, 17, 20, 37syl3anc 1371 . . . . . . . . 9 (πœ‘ β†’ (2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) = 𝐹)
3938oveq1d 7420 . . . . . . . 8 (πœ‘ β†’ ((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž) = (πΉπ‘…β„Ž))
4039sneqd 4639 . . . . . . 7 (πœ‘ β†’ {((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)} = {(πΉπ‘…β„Ž)})
4140fveq2d 6892 . . . . . 6 (πœ‘ β†’ (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)}) = (π½β€˜{(πΉπ‘…β„Ž)}))
4236, 41eqeq12d 2748 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)}) ↔ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)})))
4330, 42anbi12d 631 . . . 4 (πœ‘ β†’ (((π‘€β€˜(π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)})) ↔ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)}))))
4443riotabidv 7363 . . 3 (πœ‘ β†’ (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)}))) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)}))))
4527, 44ifbieq2d 4553 . 2 (πœ‘ β†’ if((2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©)) βˆ’ (2nd β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))})) = (π½β€˜{((2nd β€˜(1st β€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©))π‘…β„Ž)})))) = if(π‘Œ = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)})))))
4624, 45eqtrd 2772 1 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = if(π‘Œ = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΉπ‘…β„Ž)})))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  ifcif 4527  {csn 4627  βŸ¨cop 4633  βŸ¨cotp 4635   Γ— cxp 5673  β€˜cfv 6540  β„©crio 7360  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Basecbs 17140  0gc0g 17381  -gcsg 18817  LSpanclspn 20574  LHypclh 38843  DVecHcdvh 39937  LCDualclcd 40445  mapdcmpd 40483  HDMap1chdma1 40650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-hdmap1 40652
This theorem is referenced by:  hdmap1val0  40658  hdmap1val2  40659  hdmap1valc  40662
  Copyright terms: Public domain W3C validator