Step | Hyp | Ref
| Expression |
1 | | hdmap1val.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | hdmap1fval.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | hdmap1fval.v |
. . 3
β’ π = (Baseβπ) |
4 | | hdmap1fval.s |
. . 3
β’ β =
(-gβπ) |
5 | | hdmap1fval.o |
. . 3
β’ 0 =
(0gβπ) |
6 | | hdmap1fval.n |
. . 3
β’ π = (LSpanβπ) |
7 | | hdmap1fval.c |
. . 3
β’ πΆ = ((LCDualβπΎ)βπ) |
8 | | hdmap1fval.d |
. . 3
β’ π· = (BaseβπΆ) |
9 | | hdmap1fval.r |
. . 3
β’ π
= (-gβπΆ) |
10 | | hdmap1fval.q |
. . 3
β’ π = (0gβπΆ) |
11 | | hdmap1fval.j |
. . 3
β’ π½ = (LSpanβπΆ) |
12 | | hdmap1fval.m |
. . 3
β’ π = ((mapdβπΎ)βπ) |
13 | | hdmap1fval.i |
. . 3
β’ πΌ = ((HDMap1βπΎ)βπ) |
14 | | hdmap1fval.k |
. . 3
β’ (π β (πΎ β π΄ β§ π β π»)) |
15 | | df-ot 4636 |
. . . 4
β’
β¨π, πΉ, πβ© = β¨β¨π, πΉβ©, πβ© |
16 | | hdmap1val.x |
. . . . . 6
β’ (π β π β π) |
17 | | hdmap1val.f |
. . . . . 6
β’ (π β πΉ β π·) |
18 | | opelxp 5711 |
. . . . . 6
β’
(β¨π, πΉβ© β (π Γ π·) β (π β π β§ πΉ β π·)) |
19 | 16, 17, 18 | sylanbrc 583 |
. . . . 5
β’ (π β β¨π, πΉβ© β (π Γ π·)) |
20 | | hdmap1val.y |
. . . . 5
β’ (π β π β π) |
21 | | opelxp 5711 |
. . . . 5
β’
(β¨β¨π,
πΉβ©, πβ© β ((π Γ π·) Γ π) β (β¨π, πΉβ© β (π Γ π·) β§ π β π)) |
22 | 19, 20, 21 | sylanbrc 583 |
. . . 4
β’ (π β β¨β¨π, πΉβ©, πβ© β ((π Γ π·) Γ π)) |
23 | 15, 22 | eqeltrid 2837 |
. . 3
β’ (π β β¨π, πΉ, πβ© β ((π Γ π·) Γ π)) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 23 | hdmap1vallem 40656 |
. 2
β’ (π β (πΌββ¨π, πΉ, πβ©) = if((2nd
ββ¨π, πΉ, πβ©) = 0 , π, (β©β β π· ((πβ(πβ{(2nd ββ¨π, πΉ, πβ©)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)}))))) |
25 | | ot3rdg 7987 |
. . . . 5
β’ (π β π β (2nd ββ¨π, πΉ, πβ©) = π) |
26 | 20, 25 | syl 17 |
. . . 4
β’ (π β (2nd
ββ¨π, πΉ, πβ©) = π) |
27 | 26 | eqeq1d 2734 |
. . 3
β’ (π β ((2nd
ββ¨π, πΉ, πβ©) = 0 β π = 0 )) |
28 | 26 | sneqd 4639 |
. . . . . . 7
β’ (π β {(2nd
ββ¨π, πΉ, πβ©)} = {π}) |
29 | 28 | fveq2d 6892 |
. . . . . 6
β’ (π β (πβ{(2nd ββ¨π, πΉ, πβ©)}) = (πβ{π})) |
30 | 29 | fveqeq2d 6896 |
. . . . 5
β’ (π β ((πβ(πβ{(2nd ββ¨π, πΉ, πβ©)})) = (π½β{β}) β (πβ(πβ{π})) = (π½β{β}))) |
31 | | ot1stg 7985 |
. . . . . . . . . . 11
β’ ((π β π β§ πΉ β π· β§ π β π) β (1st
β(1st ββ¨π, πΉ, πβ©)) = π) |
32 | 16, 17, 20, 31 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β (1st
β(1st ββ¨π, πΉ, πβ©)) = π) |
33 | 32, 26 | oveq12d 7423 |
. . . . . . . . 9
β’ (π β ((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©)) = (π β π)) |
34 | 33 | sneqd 4639 |
. . . . . . . 8
β’ (π β {((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))} = {(π β π)}) |
35 | 34 | fveq2d 6892 |
. . . . . . 7
β’ (π β (πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))}) = (πβ{(π β π)})) |
36 | 35 | fveq2d 6892 |
. . . . . 6
β’ (π β (πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (πβ(πβ{(π β π)}))) |
37 | | ot2ndg 7986 |
. . . . . . . . . 10
β’ ((π β π β§ πΉ β π· β§ π β π) β (2nd
β(1st ββ¨π, πΉ, πβ©)) = πΉ) |
38 | 16, 17, 20, 37 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β (2nd
β(1st ββ¨π, πΉ, πβ©)) = πΉ) |
39 | 38 | oveq1d 7420 |
. . . . . . . 8
β’ (π β ((2nd
β(1st ββ¨π, πΉ, πβ©))π
β) = (πΉπ
β)) |
40 | 39 | sneqd 4639 |
. . . . . . 7
β’ (π β {((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)} = {(πΉπ
β)}) |
41 | 40 | fveq2d 6892 |
. . . . . 6
β’ (π β (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)}) = (π½β{(πΉπ
β)})) |
42 | 36, 41 | eqeq12d 2748 |
. . . . 5
β’ (π β ((πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)}) β (πβ(πβ{(π β π)})) = (π½β{(πΉπ
β)}))) |
43 | 30, 42 | anbi12d 631 |
. . . 4
β’ (π β (((πβ(πβ{(2nd ββ¨π, πΉ, πβ©)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)})) β ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ
β)})))) |
44 | 43 | riotabidv 7363 |
. . 3
β’ (π β (β©β β π· ((πβ(πβ{(2nd ββ¨π, πΉ, πβ©)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)}))) = (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ
β)})))) |
45 | 27, 44 | ifbieq2d 4553 |
. 2
β’ (π β if((2nd
ββ¨π, πΉ, πβ©) = 0 , π, (β©β β π· ((πβ(πβ{(2nd ββ¨π, πΉ, πβ©)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st ββ¨π, πΉ, πβ©)) β (2nd
ββ¨π, πΉ, πβ©))})) = (π½β{((2nd
β(1st ββ¨π, πΉ, πβ©))π
β)})))) = if(π = 0 , π, (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ
β)}))))) |
46 | 24, 45 | eqtrd 2772 |
1
β’ (π β (πΌββ¨π, πΉ, πβ©) = if(π = 0 , π, (β©β β π· ((πβ(πβ{π})) = (π½β{β}) β§ (πβ(πβ{(π β π)})) = (π½β{(πΉπ
β)}))))) |