Proof of Theorem hdmap1val
| Step | Hyp | Ref
| Expression |
| 1 | | hdmap1val.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hdmap1fval.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | hdmap1fval.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
| 4 | | hdmap1fval.s |
. . 3
⊢ − =
(-g‘𝑈) |
| 5 | | hdmap1fval.o |
. . 3
⊢ 0 =
(0g‘𝑈) |
| 6 | | hdmap1fval.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
| 7 | | hdmap1fval.c |
. . 3
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 8 | | hdmap1fval.d |
. . 3
⊢ 𝐷 = (Base‘𝐶) |
| 9 | | hdmap1fval.r |
. . 3
⊢ 𝑅 = (-g‘𝐶) |
| 10 | | hdmap1fval.q |
. . 3
⊢ 𝑄 = (0g‘𝐶) |
| 11 | | hdmap1fval.j |
. . 3
⊢ 𝐽 = (LSpan‘𝐶) |
| 12 | | hdmap1fval.m |
. . 3
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 13 | | hdmap1fval.i |
. . 3
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| 14 | | hdmap1fval.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
| 15 | | df-ot 4617 |
. . . 4
⊢
〈𝑋, 𝐹, 𝑌〉 = 〈〈𝑋, 𝐹〉, 𝑌〉 |
| 16 | | hdmap1val.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | | hdmap1val.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 18 | | opelxp 5703 |
. . . . . 6
⊢
(〈𝑋, 𝐹〉 ∈ (𝑉 × 𝐷) ↔ (𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷)) |
| 19 | 16, 17, 18 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝐹〉 ∈ (𝑉 × 𝐷)) |
| 20 | | hdmap1val.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 21 | | opelxp 5703 |
. . . . 5
⊢
(〈〈𝑋,
𝐹〉, 𝑌〉 ∈ ((𝑉 × 𝐷) × 𝑉) ↔ (〈𝑋, 𝐹〉 ∈ (𝑉 × 𝐷) ∧ 𝑌 ∈ 𝑉)) |
| 22 | 19, 20, 21 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 〈〈𝑋, 𝐹〉, 𝑌〉 ∈ ((𝑉 × 𝐷) × 𝑉)) |
| 23 | 15, 22 | eqeltrid 2837 |
. . 3
⊢ (𝜑 → 〈𝑋, 𝐹, 𝑌〉 ∈ ((𝑉 × 𝐷) × 𝑉)) |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 23 | hdmap1vallem 41740 |
. 2
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if((2nd
‘〈𝑋, 𝐹, 𝑌〉) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)}))))) |
| 25 | | ot3rdg 8013 |
. . . . 5
⊢ (𝑌 ∈ 𝑉 → (2nd ‘〈𝑋, 𝐹, 𝑌〉) = 𝑌) |
| 26 | 20, 25 | syl 17 |
. . . 4
⊢ (𝜑 → (2nd
‘〈𝑋, 𝐹, 𝑌〉) = 𝑌) |
| 27 | 26 | eqeq1d 2736 |
. . 3
⊢ (𝜑 → ((2nd
‘〈𝑋, 𝐹, 𝑌〉) = 0 ↔ 𝑌 = 0 )) |
| 28 | 26 | sneqd 4620 |
. . . . . . 7
⊢ (𝜑 → {(2nd
‘〈𝑋, 𝐹, 𝑌〉)} = {𝑌}) |
| 29 | 28 | fveq2d 6891 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)}) = (𝑁‘{𝑌})) |
| 30 | 29 | fveqeq2d 6895 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)})) = (𝐽‘{ℎ}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}))) |
| 31 | | ot1stg 8011 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑌 ∈ 𝑉) → (1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) = 𝑋) |
| 32 | 16, 17, 20, 31 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) = 𝑋) |
| 33 | 32, 26 | oveq12d 7432 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉)) = (𝑋 − 𝑌)) |
| 34 | 33 | sneqd 4620 |
. . . . . . . 8
⊢ (𝜑 → {((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))} = {(𝑋 − 𝑌)}) |
| 35 | 34 | fveq2d 6891 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))}) = (𝑁‘{(𝑋 − 𝑌)})) |
| 36 | 35 | fveq2d 6891 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝑀‘(𝑁‘{(𝑋 − 𝑌)}))) |
| 37 | | ot2ndg 8012 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑌 ∈ 𝑉) → (2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) = 𝐹) |
| 38 | 16, 17, 20, 37 | syl3anc 1372 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) = 𝐹) |
| 39 | 38 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝜑 → ((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ) = (𝐹𝑅ℎ)) |
| 40 | 39 | sneqd 4620 |
. . . . . . 7
⊢ (𝜑 → {((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)} = {(𝐹𝑅ℎ)}) |
| 41 | 40 | fveq2d 6891 |
. . . . . 6
⊢ (𝜑 → (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)}) = (𝐽‘{(𝐹𝑅ℎ)})) |
| 42 | 36, 41 | eqeq12d 2750 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)}) ↔ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))) |
| 43 | 30, 42 | anbi12d 632 |
. . . 4
⊢ (𝜑 → (((𝑀‘(𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
| 44 | 43 | riotabidv 7373 |
. . 3
⊢ (𝜑 → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)}))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)})))) |
| 45 | 27, 44 | ifbieq2d 4534 |
. 2
⊢ (𝜑 → if((2nd
‘〈𝑋, 𝐹, 𝑌〉) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘〈𝑋, 𝐹, 𝑌〉)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘〈𝑋, 𝐹, 𝑌〉)) − (2nd
‘〈𝑋, 𝐹, 𝑌〉))})) = (𝐽‘{((2nd
‘(1st ‘〈𝑋, 𝐹, 𝑌〉))𝑅ℎ)})))) = if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |
| 46 | 24, 45 | eqtrd 2769 |
1
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))))) |