Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege98 | Structured version Visualization version GIF version |
Description: If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege98.x | ⊢ 𝑋 ∈ 𝐴 |
frege98.y | ⊢ 𝑌 ∈ 𝐵 |
frege98.z | ⊢ 𝑍 ∈ 𝐶 |
frege98.r | ⊢ 𝑅 ∈ 𝐷 |
Ref | Expression |
---|---|
frege98 | ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege98.x | . . . 4 ⊢ 𝑋 ∈ 𝐴 | |
2 | frege98.r | . . . 4 ⊢ 𝑅 ∈ 𝐷 | |
3 | 1, 2 | frege97 41889 | . . 3 ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) |
4 | frege98.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
5 | frege98.z | . . . 4 ⊢ 𝑍 ∈ 𝐶 | |
6 | fvex 6838 | . . . . 5 ⊢ (t+‘𝑅) ∈ V | |
7 | imaexg 7830 | . . . . 5 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
9 | 4, 5, 2, 8 | frege84 41876 | . . 3 ⊢ (𝑅 hereditary ((t+‘𝑅) “ {𝑋}) → (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋})))) |
10 | 3, 9 | ax-mp 5 | . 2 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋}))) |
11 | 1 | elexi 3460 | . . . 4 ⊢ 𝑋 ∈ V |
12 | 4 | elexi 3460 | . . . 4 ⊢ 𝑌 ∈ V |
13 | 11, 12 | elimasn 6027 | . . 3 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 〈𝑋, 𝑌〉 ∈ (t+‘𝑅)) |
14 | df-br 5093 | . . 3 ⊢ (𝑋(t+‘𝑅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (t+‘𝑅)) | |
15 | 13, 14 | bitr4i 277 | . 2 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑌) |
16 | 5 | elexi 3460 | . . . . 5 ⊢ 𝑍 ∈ V |
17 | 11, 16 | elimasn 6027 | . . . 4 ⊢ (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 〈𝑋, 𝑍〉 ∈ (t+‘𝑅)) |
18 | df-br 5093 | . . . 4 ⊢ (𝑋(t+‘𝑅)𝑍 ↔ 〈𝑋, 𝑍〉 ∈ (t+‘𝑅)) | |
19 | 17, 18 | bitr4i 277 | . . 3 ⊢ (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑍) |
20 | 19 | imbi2i 335 | . 2 ⊢ ((𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
21 | 10, 15, 20 | 3imtr3i 290 | 1 ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 {csn 4573 〈cop 4579 class class class wbr 5092 “ cima 5623 ‘cfv 6479 t+ctcl 14795 hereditary whe 41701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-frege1 41719 ax-frege2 41720 ax-frege8 41738 ax-frege52a 41786 ax-frege58b 41830 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-seq 13823 df-trcl 14797 df-relexp 14830 df-he 41702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |