| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege98 | Structured version Visualization version GIF version | ||
| Description: If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege98.x | ⊢ 𝑋 ∈ 𝐴 |
| frege98.y | ⊢ 𝑌 ∈ 𝐵 |
| frege98.z | ⊢ 𝑍 ∈ 𝐶 |
| frege98.r | ⊢ 𝑅 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| frege98 | ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege98.x | . . . 4 ⊢ 𝑋 ∈ 𝐴 | |
| 2 | frege98.r | . . . 4 ⊢ 𝑅 ∈ 𝐷 | |
| 3 | 1, 2 | frege97 43951 | . . 3 ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) |
| 4 | frege98.y | . . . 4 ⊢ 𝑌 ∈ 𝐵 | |
| 5 | frege98.z | . . . 4 ⊢ 𝑍 ∈ 𝐶 | |
| 6 | fvex 6894 | . . . . 5 ⊢ (t+‘𝑅) ∈ V | |
| 7 | imaexg 7914 | . . . . 5 ⊢ ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((t+‘𝑅) “ {𝑋}) ∈ V |
| 9 | 4, 5, 2, 8 | frege84 43938 | . . 3 ⊢ (𝑅 hereditary ((t+‘𝑅) “ {𝑋}) → (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋})))) |
| 10 | 3, 9 | ax-mp 5 | . 2 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋}))) |
| 11 | 1 | elexi 3487 | . . . 4 ⊢ 𝑋 ∈ V |
| 12 | 4 | elexi 3487 | . . . 4 ⊢ 𝑌 ∈ V |
| 13 | 11, 12 | elimasn 6082 | . . 3 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 〈𝑋, 𝑌〉 ∈ (t+‘𝑅)) |
| 14 | df-br 5125 | . . 3 ⊢ (𝑋(t+‘𝑅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (t+‘𝑅)) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑌) |
| 16 | 5 | elexi 3487 | . . . . 5 ⊢ 𝑍 ∈ V |
| 17 | 11, 16 | elimasn 6082 | . . . 4 ⊢ (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 〈𝑋, 𝑍〉 ∈ (t+‘𝑅)) |
| 18 | df-br 5125 | . . . 4 ⊢ (𝑋(t+‘𝑅)𝑍 ↔ 〈𝑋, 𝑍〉 ∈ (t+‘𝑅)) | |
| 19 | 17, 18 | bitr4i 278 | . . 3 ⊢ (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑍) |
| 20 | 19 | imbi2i 336 | . 2 ⊢ ((𝑌(t+‘𝑅)𝑍 → 𝑍 ∈ ((t+‘𝑅) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
| 21 | 10, 15, 20 | 3imtr3i 291 | 1 ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 class class class wbr 5124 “ cima 5662 ‘cfv 6536 t+ctcl 15009 hereditary whe 43763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege52a 43848 ax-frege58b 43892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-trcl 15011 df-relexp 15044 df-he 43764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |