Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege98 Structured version   Visualization version   GIF version

Theorem frege98 43974
Description: If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege98.x 𝑋𝐴
frege98.y 𝑌𝐵
frege98.z 𝑍𝐶
frege98.r 𝑅𝐷
Assertion
Ref Expression
frege98 (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))

Proof of Theorem frege98
StepHypRef Expression
1 frege98.x . . . 4 𝑋𝐴
2 frege98.r . . . 4 𝑅𝐷
31, 2frege97 43973 . . 3 𝑅 hereditary ((t+‘𝑅) “ {𝑋})
4 frege98.y . . . 4 𝑌𝐵
5 frege98.z . . . 4 𝑍𝐶
6 fvex 6919 . . . . 5 (t+‘𝑅) ∈ V
7 imaexg 7935 . . . . 5 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
86, 7ax-mp 5 . . . 4 ((t+‘𝑅) “ {𝑋}) ∈ V
94, 5, 2, 8frege84 43960 . . 3 (𝑅 hereditary ((t+‘𝑅) “ {𝑋}) → (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋}))))
103, 9ax-mp 5 . 2 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋})))
111elexi 3503 . . . 4 𝑋 ∈ V
124elexi 3503 . . . 4 𝑌 ∈ V
1311, 12elimasn 6108 . . 3 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ (t+‘𝑅))
14 df-br 5144 . . 3 (𝑋(t+‘𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (t+‘𝑅))
1513, 14bitr4i 278 . 2 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑌)
165elexi 3503 . . . . 5 𝑍 ∈ V
1711, 16elimasn 6108 . . . 4 (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑍⟩ ∈ (t+‘𝑅))
18 df-br 5144 . . . 4 (𝑋(t+‘𝑅)𝑍 ↔ ⟨𝑋, 𝑍⟩ ∈ (t+‘𝑅))
1917, 18bitr4i 278 . . 3 (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑍)
2019imbi2i 336 . 2 ((𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))
2110, 15, 203imtr3i 291 1 (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480  {csn 4626  cop 4632   class class class wbr 5143  cima 5688  cfv 6561  t+ctcl 15024   hereditary whe 43785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-frege1 43803  ax-frege2 43804  ax-frege8 43822  ax-frege52a 43870  ax-frege58b 43914
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-trcl 15026  df-relexp 15059  df-he 43786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator