MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3OLD Structured version   Visualization version   GIF version

Theorem dffun3OLD 6451
Description: Obsolete version of dffun3 6450 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffun3OLD (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun3OLD
StepHypRef Expression
1 dffun2 6447 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
2 breq2 5079 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐴𝑦𝑥𝐴𝑧))
32mo4 2567 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
4 df-mo 2541 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
53, 4bitr3i 276 . . . 4 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
65albii 1822 . . 3 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
76anbi2i 623 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
81, 7bitri 274 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  ∃*wmo 2539   class class class wbr 5075  Rel wrel 5595  Fun wfun 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2069  df-mo 2541  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5076  df-opab 5138  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-fun 6439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator