MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun3OLD Structured version   Visualization version   GIF version

Theorem dffun3OLD 6578
Description: Obsolete version of dffun3 6577 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffun3OLD (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun3OLD
StepHypRef Expression
1 dffun2 6573 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
2 breq2 5152 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐴𝑦𝑥𝐴𝑧))
32mo4 2564 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
4 df-mo 2538 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
53, 4bitr3i 277 . . . 4 (∀𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
65albii 1816 . . 3 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
76anbi2i 623 . 2 ((Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
81, 7bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1776  ∃*wmo 2536   class class class wbr 5148  Rel wrel 5694  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-fun 6565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator