Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpred4 Structured version   Visualization version   GIF version

Theorem dfpred4 38502
Description: Alternate definition of the predecessor class when 𝑁 is a set. (Contributed by Peter Mazsa, 26-Jan-2026.)
Assertion
Ref Expression
dfpred4 (𝑁𝑉 → Pred(𝑅, 𝐴, 𝑁) = [𝑁](𝑅𝐴))

Proof of Theorem dfpred4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dfpred3g 6260 . 2 (𝑁𝑉 → Pred(𝑅, 𝐴, 𝑁) = {𝑚𝐴𝑚𝑅𝑁})
2 ec1cnvres 38318 . 2 (𝑁𝑉 → [𝑁](𝑅𝐴) = {𝑚𝐴𝑚𝑅𝑁})
31, 2eqtr4d 2769 1 (𝑁𝑉 → Pred(𝑅, 𝐴, 𝑁) = [𝑁](𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  ccnv 5613  cres 5616  Predcpred 6247  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ec 8624
This theorem is referenced by:  dfpre4  38503
  Copyright terms: Public domain W3C validator