MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3g Structured version   Visualization version   GIF version

Theorem dfpred3g 6213
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
dfpred3g (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Distinct variable groups:   𝑦,𝑅   𝑦,𝐴   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfpred3g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 predeq3 6205 . . 3 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
2 breq2 5083 . . . 4 (𝑥 = 𝑋 → (𝑦𝑅𝑥𝑦𝑅𝑋))
32rabbidv 3413 . . 3 (𝑥 = 𝑋 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦𝑅𝑋})
41, 3eqeq12d 2756 . 2 (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}))
5 vex 3435 . . 3 𝑥 ∈ V
65dfpred3 6212 . 2 Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥}
74, 6vtoclg 3504 1 (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070   class class class wbr 5079  Predcpred 6200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201
This theorem is referenced by:  fnrelpredd  33057  wsuclem  33815  lrrecpred  34097
  Copyright terms: Public domain W3C validator