Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpred3g | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
dfpred3g | ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 6205 | . . 3 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
2 | breq2 5083 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑋)) | |
3 | 2 | rabbidv 3413 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
4 | 1, 3 | eqeq12d 2756 | . 2 ⊢ (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋})) |
5 | vex 3435 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | dfpred3 6212 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} |
7 | 4, 6 | vtoclg 3504 | 1 ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 class class class wbr 5079 Predcpred 6200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 |
This theorem is referenced by: fnrelpredd 33057 wsuclem 33815 lrrecpred 34097 |
Copyright terms: Public domain | W3C validator |