| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpred3g | Structured version Visualization version GIF version | ||
| Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| dfpred3g | ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predeq3 6252 | . . 3 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
| 2 | breq2 5093 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑋)) | |
| 3 | 2 | rabbidv 3402 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| 4 | 1, 3 | eqeq12d 2747 | . 2 ⊢ (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋})) |
| 5 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 6 | 5 | dfpred3 6259 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} |
| 7 | 4, 6 | vtoclg 3507 | 1 ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 |
| This theorem is referenced by: lrrecpred 27887 fnrelpredd 35102 wsuclem 35867 dfpred4 38502 |
| Copyright terms: Public domain | W3C validator |