| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpred3g | Structured version Visualization version GIF version | ||
| Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| dfpred3g | ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predeq3 6278 | . . 3 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
| 2 | breq2 5111 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑋)) | |
| 3 | 2 | rabbidv 3413 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| 4 | 1, 3 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋})) |
| 5 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 6 | 5 | dfpred3 6285 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} |
| 7 | 4, 6 | vtoclg 3520 | 1 ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: lrrecpred 27851 fnrelpredd 35079 wsuclem 35813 |
| Copyright terms: Public domain | W3C validator |