MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3g Structured version   Visualization version   GIF version

Theorem dfpred3g 6313
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
dfpred3g (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Distinct variable groups:   𝑦,𝑅   𝑦,𝐴   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfpred3g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 predeq3 6305 . . 3 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
2 breq2 5153 . . . 4 (𝑥 = 𝑋 → (𝑦𝑅𝑥𝑦𝑅𝑋))
32rabbidv 3441 . . 3 (𝑥 = 𝑋 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦𝑅𝑋})
41, 3eqeq12d 2749 . 2 (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}))
5 vex 3479 . . 3 𝑥 ∈ V
65dfpred3 6312 . 2 Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥}
74, 6vtoclg 3557 1 (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {crab 3433   class class class wbr 5149  Predcpred 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301
This theorem is referenced by:  lrrecpred  27428  fnrelpredd  34092  wsuclem  34797
  Copyright terms: Public domain W3C validator