MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3g Structured version   Visualization version   GIF version

Theorem dfpred3g 6261
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
dfpred3g (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Distinct variable groups:   𝑦,𝑅   𝑦,𝐴   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfpred3g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 predeq3 6253 . . 3 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
2 breq2 5096 . . . 4 (𝑥 = 𝑋 → (𝑦𝑅𝑥𝑦𝑅𝑋))
32rabbidv 3402 . . 3 (𝑥 = 𝑋 → {𝑦𝐴𝑦𝑅𝑥} = {𝑦𝐴𝑦𝑅𝑋})
41, 3eqeq12d 2745 . 2 (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}))
5 vex 3440 . . 3 𝑥 ∈ V
65dfpred3 6260 . 2 Pred(𝑅, 𝐴, 𝑥) = {𝑦𝐴𝑦𝑅𝑥}
74, 6vtoclg 3509 1 (𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394   class class class wbr 5092  Predcpred 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249
This theorem is referenced by:  lrrecpred  27856  fnrelpredd  35056  wsuclem  35803
  Copyright terms: Public domain W3C validator