![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpred3g | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
dfpred3g | ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 6262 | . . 3 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
2 | breq2 5114 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑋)) | |
3 | 2 | rabbidv 3418 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
4 | 1, 3 | eqeq12d 2753 | . 2 ⊢ (𝑥 = 𝑋 → (Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ↔ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋})) |
5 | vex 3452 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | dfpred3 6269 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑥) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} |
7 | 4, 6 | vtoclg 3528 | 1 ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3410 class class class wbr 5110 Predcpred 6257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 |
This theorem is referenced by: lrrecpred 27278 fnrelpredd 33733 wsuclem 34439 |
Copyright terms: Public domain | W3C validator |