MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq1 Structured version   Visualization version   GIF version

Theorem cuteq1 27753
Description: Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.)
Hypotheses
Ref Expression
cuteq1.1 (𝜑 → 0s𝐴)
cuteq1.2 (𝜑𝐴 <<s { 1s })
cuteq1.3 (𝜑 → { 1s } <<s 𝐵)
Assertion
Ref Expression
cuteq1 (𝜑 → (𝐴 |s 𝐵) = 1s )

Proof of Theorem cuteq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq1.2 . 2 (𝜑𝐴 <<s { 1s })
2 cuteq1.3 . 2 (𝜑 → { 1s } <<s 𝐵)
3 bday1s 27750 . . . . . 6 ( bday ‘ 1s ) = 1o
4 df-1o 8437 . . . . . 6 1o = suc ∅
53, 4eqtri 2753 . . . . 5 ( bday ‘ 1s ) = suc ∅
6 ssltsep 27709 . . . . . . . . . . . . . 14 (𝐴 <<s { 0s } → ∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦)
7 dfral2 3082 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
87ralbii 3076 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
9 ralnex 3056 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
108, 9bitri 275 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
116, 10sylib 218 . . . . . . . . . . . . 13 (𝐴 <<s { 0s } → ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
12 cuteq1.1 . . . . . . . . . . . . . . 15 (𝜑 → 0s𝐴)
13 0sno 27745 . . . . . . . . . . . . . . . 16 0s No
14 sltirr 27665 . . . . . . . . . . . . . . . 16 ( 0s No → ¬ 0s <s 0s )
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ¬ 0s <s 0s
16 breq1 5113 . . . . . . . . . . . . . . . . 17 (𝑥 = 0s → (𝑥 <s 0s ↔ 0s <s 0s ))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑥 = 0s → (¬ 𝑥 <s 0s ↔ ¬ 0s <s 0s ))
1817rspcev 3591 . . . . . . . . . . . . . . 15 (( 0s𝐴 ∧ ¬ 0s <s 0s ) → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
1912, 15, 18sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2013elexi 3473 . . . . . . . . . . . . . . . 16 0s ∈ V
21 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑦 = 0s → (𝑥 <s 𝑦𝑥 <s 0s ))
2221notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 0s → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s ))
2320, 22rexsn 4649 . . . . . . . . . . . . . . 15 (∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s )
2423rexbii 3077 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2519, 24sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
2611, 25nsyl3 138 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐴 <<s { 0s })
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 No ) → ¬ 𝐴 <<s { 0s })
28 sneq 4602 . . . . . . . . . . . . 13 (𝑥 = 0s → {𝑥} = { 0s })
2928breq2d 5122 . . . . . . . . . . . 12 (𝑥 = 0s → (𝐴 <<s {𝑥} ↔ 𝐴 <<s { 0s }))
3029notbid 318 . . . . . . . . . . 11 (𝑥 = 0s → (¬ 𝐴 <<s {𝑥} ↔ ¬ 𝐴 <<s { 0s }))
3127, 30syl5ibrcom 247 . . . . . . . . . 10 ((𝜑𝑥 No ) → (𝑥 = 0s → ¬ 𝐴 <<s {𝑥}))
3231necon2ad 2941 . . . . . . . . 9 ((𝜑𝑥 No ) → (𝐴 <<s {𝑥} → 𝑥 ≠ 0s ))
3332adantrd 491 . . . . . . . 8 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → 𝑥 ≠ 0s ))
3433impr 454 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → 𝑥 ≠ 0s )
35 bday0b 27749 . . . . . . . . 9 (𝑥 No → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3635ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3736necon3bid 2970 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) ≠ ∅ ↔ 𝑥 ≠ 0s ))
3834, 37mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday 𝑥) ≠ ∅)
39 bdayelon 27695 . . . . . . . . 9 ( bday 𝑥) ∈ On
4039onordi 6448 . . . . . . . 8 Ord ( bday 𝑥)
41 ord0eln0 6391 . . . . . . . 8 (Ord ( bday 𝑥) → (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅))
4240, 41ax-mp 5 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅)
43 0elon 6390 . . . . . . . 8 ∅ ∈ On
4443, 39onsucssi 7820 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ suc ∅ ⊆ ( bday 𝑥))
4542, 44bitr3i 277 . . . . . 6 (( bday 𝑥) ≠ ∅ ↔ suc ∅ ⊆ ( bday 𝑥))
4638, 45sylib 218 . . . . 5 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → suc ∅ ⊆ ( bday 𝑥))
475, 46eqsstrid 3988 . . . 4 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday ‘ 1s ) ⊆ ( bday 𝑥))
4847expr 456 . . 3 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
4948ralrimiva 3126 . 2 (𝜑 → ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
50 1sno 27746 . . . . . . 7 1s No
5150elexi 3473 . . . . . 6 1s ∈ V
5251snnz 4743 . . . . 5 { 1s } ≠ ∅
53 sslttr 27726 . . . . 5 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ { 1s } ≠ ∅) → 𝐴 <<s 𝐵)
5452, 53mp3an3 1452 . . . 4 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵) → 𝐴 <<s 𝐵)
551, 2, 54syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
56 eqscut2 27725 . . 3 ((𝐴 <<s 𝐵 ∧ 1s No ) → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
5755, 50, 56sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
581, 2, 49, 57mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 1s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  Ord word 6334  suc csuc 6337  cfv 6514  (class class class)co 7390  1oc1o 8430   No csur 27558   <s cslt 27559   bday cbday 27560   <<s csslt 27699   |s cscut 27701   0s c0s 27741   1s c1s 27742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744
This theorem is referenced by:  precsexlem11  28126
  Copyright terms: Public domain W3C validator