MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq1 Structured version   Visualization version   GIF version

Theorem cuteq1 27798
Description: Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.)
Hypotheses
Ref Expression
cuteq1.1 (𝜑 → 0s𝐴)
cuteq1.2 (𝜑𝐴 <<s { 1s })
cuteq1.3 (𝜑 → { 1s } <<s 𝐵)
Assertion
Ref Expression
cuteq1 (𝜑 → (𝐴 |s 𝐵) = 1s )

Proof of Theorem cuteq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq1.2 . 2 (𝜑𝐴 <<s { 1s })
2 cuteq1.3 . 2 (𝜑 → { 1s } <<s 𝐵)
3 bday1s 27795 . . . . . 6 ( bday ‘ 1s ) = 1o
4 df-1o 8480 . . . . . 6 1o = suc ∅
53, 4eqtri 2758 . . . . 5 ( bday ‘ 1s ) = suc ∅
6 ssltsep 27754 . . . . . . . . . . . . . 14 (𝐴 <<s { 0s } → ∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦)
7 dfral2 3088 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
87ralbii 3082 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
9 ralnex 3062 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
108, 9bitri 275 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
116, 10sylib 218 . . . . . . . . . . . . 13 (𝐴 <<s { 0s } → ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
12 cuteq1.1 . . . . . . . . . . . . . . 15 (𝜑 → 0s𝐴)
13 0sno 27790 . . . . . . . . . . . . . . . 16 0s No
14 sltirr 27710 . . . . . . . . . . . . . . . 16 ( 0s No → ¬ 0s <s 0s )
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ¬ 0s <s 0s
16 breq1 5122 . . . . . . . . . . . . . . . . 17 (𝑥 = 0s → (𝑥 <s 0s ↔ 0s <s 0s ))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑥 = 0s → (¬ 𝑥 <s 0s ↔ ¬ 0s <s 0s ))
1817rspcev 3601 . . . . . . . . . . . . . . 15 (( 0s𝐴 ∧ ¬ 0s <s 0s ) → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
1912, 15, 18sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2013elexi 3482 . . . . . . . . . . . . . . . 16 0s ∈ V
21 breq2 5123 . . . . . . . . . . . . . . . . 17 (𝑦 = 0s → (𝑥 <s 𝑦𝑥 <s 0s ))
2221notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 0s → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s ))
2320, 22rexsn 4658 . . . . . . . . . . . . . . 15 (∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s )
2423rexbii 3083 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2519, 24sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
2611, 25nsyl3 138 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐴 <<s { 0s })
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 No ) → ¬ 𝐴 <<s { 0s })
28 sneq 4611 . . . . . . . . . . . . 13 (𝑥 = 0s → {𝑥} = { 0s })
2928breq2d 5131 . . . . . . . . . . . 12 (𝑥 = 0s → (𝐴 <<s {𝑥} ↔ 𝐴 <<s { 0s }))
3029notbid 318 . . . . . . . . . . 11 (𝑥 = 0s → (¬ 𝐴 <<s {𝑥} ↔ ¬ 𝐴 <<s { 0s }))
3127, 30syl5ibrcom 247 . . . . . . . . . 10 ((𝜑𝑥 No ) → (𝑥 = 0s → ¬ 𝐴 <<s {𝑥}))
3231necon2ad 2947 . . . . . . . . 9 ((𝜑𝑥 No ) → (𝐴 <<s {𝑥} → 𝑥 ≠ 0s ))
3332adantrd 491 . . . . . . . 8 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → 𝑥 ≠ 0s ))
3433impr 454 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → 𝑥 ≠ 0s )
35 bday0b 27794 . . . . . . . . 9 (𝑥 No → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3635ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3736necon3bid 2976 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) ≠ ∅ ↔ 𝑥 ≠ 0s ))
3834, 37mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday 𝑥) ≠ ∅)
39 bdayelon 27740 . . . . . . . . 9 ( bday 𝑥) ∈ On
4039onordi 6465 . . . . . . . 8 Ord ( bday 𝑥)
41 ord0eln0 6408 . . . . . . . 8 (Ord ( bday 𝑥) → (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅))
4240, 41ax-mp 5 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅)
43 0elon 6407 . . . . . . . 8 ∅ ∈ On
4443, 39onsucssi 7836 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ suc ∅ ⊆ ( bday 𝑥))
4542, 44bitr3i 277 . . . . . 6 (( bday 𝑥) ≠ ∅ ↔ suc ∅ ⊆ ( bday 𝑥))
4638, 45sylib 218 . . . . 5 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → suc ∅ ⊆ ( bday 𝑥))
475, 46eqsstrid 3997 . . . 4 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday ‘ 1s ) ⊆ ( bday 𝑥))
4847expr 456 . . 3 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
4948ralrimiva 3132 . 2 (𝜑 → ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
50 1sno 27791 . . . . . . 7 1s No
5150elexi 3482 . . . . . 6 1s ∈ V
5251snnz 4752 . . . . 5 { 1s } ≠ ∅
53 sslttr 27771 . . . . 5 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ { 1s } ≠ ∅) → 𝐴 <<s 𝐵)
5452, 53mp3an3 1452 . . . 4 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵) → 𝐴 <<s 𝐵)
551, 2, 54syl2anc 584 . . 3 (𝜑𝐴 <<s 𝐵)
56 eqscut2 27770 . . 3 ((𝐴 <<s 𝐵 ∧ 1s No ) → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
5755, 50, 56sylancl 586 . 2 (𝜑 → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
581, 2, 49, 57mpbir3and 1343 1 (𝜑 → (𝐴 |s 𝐵) = 1s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  Ord word 6351  suc csuc 6354  cfv 6531  (class class class)co 7405  1oc1o 8473   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746   0s c0s 27786   1s c1s 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789
This theorem is referenced by:  precsexlem11  28171
  Copyright terms: Public domain W3C validator