MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuteq1 Structured version   Visualization version   GIF version

Theorem cuteq1 27679
Description: Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.)
Hypotheses
Ref Expression
cuteq1.1 (𝜑 → 0s𝐴)
cuteq1.2 (𝜑𝐴 <<s { 1s })
cuteq1.3 (𝜑 → { 1s } <<s 𝐵)
Assertion
Ref Expression
cuteq1 (𝜑 → (𝐴 |s 𝐵) = 1s )

Proof of Theorem cuteq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cuteq1.2 . 2 (𝜑𝐴 <<s { 1s })
2 cuteq1.3 . 2 (𝜑 → { 1s } <<s 𝐵)
3 bday1s 27677 . . . . . 6 ( bday ‘ 1s ) = 1o
4 df-1o 8472 . . . . . 6 1o = suc ∅
53, 4eqtri 2759 . . . . 5 ( bday ‘ 1s ) = suc ∅
6 ssltsep 27636 . . . . . . . . . . . . . 14 (𝐴 <<s { 0s } → ∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦)
7 dfral2 3098 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
87ralbii 3092 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
9 ralnex 3071 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 ¬ ∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
108, 9bitri 275 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦 ∈ { 0s }𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
116, 10sylib 217 . . . . . . . . . . . . 13 (𝐴 <<s { 0s } → ¬ ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
12 cuteq1.1 . . . . . . . . . . . . . . 15 (𝜑 → 0s𝐴)
13 0sno 27672 . . . . . . . . . . . . . . . 16 0s No
14 sltirr 27592 . . . . . . . . . . . . . . . 16 ( 0s No → ¬ 0s <s 0s )
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 ¬ 0s <s 0s
16 breq1 5151 . . . . . . . . . . . . . . . . 17 (𝑥 = 0s → (𝑥 <s 0s ↔ 0s <s 0s ))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑥 = 0s → (¬ 𝑥 <s 0s ↔ ¬ 0s <s 0s ))
1817rspcev 3612 . . . . . . . . . . . . . . 15 (( 0s𝐴 ∧ ¬ 0s <s 0s ) → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
1912, 15, 18sylancl 585 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2013elexi 3493 . . . . . . . . . . . . . . . 16 0s ∈ V
21 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑦 = 0s → (𝑥 <s 𝑦𝑥 <s 0s ))
2221notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 0s → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s ))
2320, 22rexsn 4686 . . . . . . . . . . . . . . 15 (∃𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s )
2423rexbii 3093 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ∃𝑥𝐴 ¬ 𝑥 <s 0s )
2519, 24sylibr 233 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥𝐴𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦)
2611, 25nsyl3 138 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐴 <<s { 0s })
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 No ) → ¬ 𝐴 <<s { 0s })
28 sneq 4638 . . . . . . . . . . . . 13 (𝑥 = 0s → {𝑥} = { 0s })
2928breq2d 5160 . . . . . . . . . . . 12 (𝑥 = 0s → (𝐴 <<s {𝑥} ↔ 𝐴 <<s { 0s }))
3029notbid 318 . . . . . . . . . . 11 (𝑥 = 0s → (¬ 𝐴 <<s {𝑥} ↔ ¬ 𝐴 <<s { 0s }))
3127, 30syl5ibrcom 246 . . . . . . . . . 10 ((𝜑𝑥 No ) → (𝑥 = 0s → ¬ 𝐴 <<s {𝑥}))
3231necon2ad 2954 . . . . . . . . 9 ((𝜑𝑥 No ) → (𝐴 <<s {𝑥} → 𝑥 ≠ 0s ))
3332adantrd 491 . . . . . . . 8 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → 𝑥 ≠ 0s ))
3433impr 454 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → 𝑥 ≠ 0s )
35 bday0b 27676 . . . . . . . . 9 (𝑥 No → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3635ad2antrl 725 . . . . . . . 8 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) = ∅ ↔ 𝑥 = 0s ))
3736necon3bid 2984 . . . . . . 7 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → (( bday 𝑥) ≠ ∅ ↔ 𝑥 ≠ 0s ))
3834, 37mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday 𝑥) ≠ ∅)
39 bdayelon 27622 . . . . . . . . 9 ( bday 𝑥) ∈ On
4039onordi 6475 . . . . . . . 8 Ord ( bday 𝑥)
41 ord0eln0 6419 . . . . . . . 8 (Ord ( bday 𝑥) → (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅))
4240, 41ax-mp 5 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ ( bday 𝑥) ≠ ∅)
43 0elon 6418 . . . . . . . 8 ∅ ∈ On
4443, 39onsucssi 7834 . . . . . . 7 (∅ ∈ ( bday 𝑥) ↔ suc ∅ ⊆ ( bday 𝑥))
4542, 44bitr3i 277 . . . . . 6 (( bday 𝑥) ≠ ∅ ↔ suc ∅ ⊆ ( bday 𝑥))
4638, 45sylib 217 . . . . 5 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → suc ∅ ⊆ ( bday 𝑥))
475, 46eqsstrid 4030 . . . 4 ((𝜑 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))) → ( bday ‘ 1s ) ⊆ ( bday 𝑥))
4847expr 456 . . 3 ((𝜑𝑥 No ) → ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
4948ralrimiva 3145 . 2 (𝜑 → ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))
50 1sno 27673 . . . . . . 7 1s No
5150elexi 3493 . . . . . 6 1s ∈ V
5251snnz 4780 . . . . 5 { 1s } ≠ ∅
53 sslttr 27653 . . . . 5 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ { 1s } ≠ ∅) → 𝐴 <<s 𝐵)
5452, 53mp3an3 1449 . . . 4 ((𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵) → 𝐴 <<s 𝐵)
551, 2, 54syl2anc 583 . . 3 (𝜑𝐴 <<s 𝐵)
56 eqscut2 27652 . . 3 ((𝐴 <<s 𝐵 ∧ 1s No ) → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
5755, 50, 56sylancl 585 . 2 (𝜑 → ((𝐴 |s 𝐵) = 1s ↔ (𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀𝑥 No ((𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵) → ( bday ‘ 1s ) ⊆ ( bday 𝑥)))))
581, 2, 49, 57mpbir3and 1341 1 (𝜑 → (𝐴 |s 𝐵) = 1s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  Ord word 6363  suc csuc 6366  cfv 6543  (class class class)co 7412  1oc1o 8465   No csur 27486   <s cslt 27487   bday cbday 27488   <<s csslt 27626   |s cscut 27628   0s c0s 27668   1s c1s 27669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490  df-bday 27491  df-sslt 27627  df-scut 27629  df-0s 27670  df-1s 27671
This theorem is referenced by:  precsexlem11  28028
  Copyright terms: Public domain W3C validator