MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Visualization version   GIF version

Theorem trfil3 23373
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))

Proof of Theorem trfil3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 trfil2 23372 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
2 dfral2 3100 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅)
3 nne 2945 . . . . . . . 8 (¬ (𝑣𝐴) ≠ ∅ ↔ (𝑣𝐴) = ∅)
4 filelss 23337 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → 𝑣𝑌)
5 reldisj 4449 . . . . . . . . 9 (𝑣𝑌 → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
64, 5syl 17 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
73, 6bitrid 283 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → (¬ (𝑣𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
87rexbidva 3177 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
98adantr 482 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
10 difssd 4130 . . . . . 6 (𝐴𝑌 → (𝑌𝐴) ⊆ 𝑌)
11 elfilss 23361 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌𝐴) ⊆ 𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
1210, 11sylan2 594 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
139, 12bitr4d 282 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ (𝑌𝐴) ∈ 𝐿))
1413notbid 318 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
152, 14bitrid 283 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
161, 15bitrd 279 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3943  cin 3945  wss 3946  c0 4320  cfv 6539  (class class class)co 7403  t crest 17361  Filcfil 23330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7969  df-2nd 7970  df-rest 17363  df-fbas 20925  df-fg 20926  df-fil 23331
This theorem is referenced by:  fgtr  23375  trufil  23395  flimrest  23468  fclsrest  23509  cfilres  24794  relcmpcmet  24816
  Copyright terms: Public domain W3C validator