MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Visualization version   GIF version

Theorem trfil3 23782
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))

Proof of Theorem trfil3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 trfil2 23781 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
2 dfral2 3082 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅)
3 nne 2930 . . . . . . . 8 (¬ (𝑣𝐴) ≠ ∅ ↔ (𝑣𝐴) = ∅)
4 filelss 23746 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → 𝑣𝑌)
5 reldisj 4419 . . . . . . . . 9 (𝑣𝑌 → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
64, 5syl 17 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
73, 6bitrid 283 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → (¬ (𝑣𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
87rexbidva 3156 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
98adantr 480 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
10 difssd 4103 . . . . . 6 (𝐴𝑌 → (𝑌𝐴) ⊆ 𝑌)
11 elfilss 23770 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌𝐴) ⊆ 𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
1210, 11sylan2 593 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
139, 12bitr4d 282 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ (𝑌𝐴) ∈ 𝐿))
1413notbid 318 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
152, 14bitrid 283 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
161, 15bitrd 279 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299  cfv 6514  (class class class)co 7390  t crest 17390  Filcfil 23739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rest 17392  df-fbas 21268  df-fg 21269  df-fil 23740
This theorem is referenced by:  fgtr  23784  trufil  23804  flimrest  23877  fclsrest  23918  cfilres  25203  relcmpcmet  25225
  Copyright terms: Public domain W3C validator