| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trfil3 | Structured version Visualization version GIF version | ||
| Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| trfil3 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfil2 23774 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | |
| 2 | dfral2 3081 | . . 3 ⊢ (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅) | |
| 3 | nne 2929 | . . . . . . . 8 ⊢ (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑣 ∩ 𝐴) = ∅) | |
| 4 | filelss 23739 | . . . . . . . . 9 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → 𝑣 ⊆ 𝑌) | |
| 5 | reldisj 4416 | . . . . . . . . 9 ⊢ (𝑣 ⊆ 𝑌 → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
| 7 | 3, 6 | bitrid 283 | . . . . . . 7 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
| 8 | 7 | rexbidva 3155 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
| 10 | difssd 4100 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → (𝑌 ∖ 𝐴) ⊆ 𝑌) | |
| 11 | elfilss 23763 | . . . . . 6 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌 ∖ 𝐴) ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
| 12 | 10, 11 | sylan2 593 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
| 13 | 9, 12 | bitr4d 282 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
| 14 | 13 | notbid 318 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
| 15 | 2, 14 | bitrid 283 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
| 16 | 1, 15 | bitrd 279 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Filcfil 23732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-rest 17385 df-fbas 21261 df-fg 21262 df-fil 23733 |
| This theorem is referenced by: fgtr 23777 trufil 23797 flimrest 23870 fclsrest 23911 cfilres 25196 relcmpcmet 25218 |
| Copyright terms: Public domain | W3C validator |