![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfil3 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil3 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfil2 23613 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | |
2 | dfral2 3097 | . . 3 ⊢ (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅) | |
3 | nne 2942 | . . . . . . . 8 ⊢ (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑣 ∩ 𝐴) = ∅) | |
4 | filelss 23578 | . . . . . . . . 9 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → 𝑣 ⊆ 𝑌) | |
5 | reldisj 4452 | . . . . . . . . 9 ⊢ (𝑣 ⊆ 𝑌 → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
7 | 3, 6 | bitrid 282 | . . . . . . 7 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
8 | 7 | rexbidva 3174 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
10 | difssd 4133 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → (𝑌 ∖ 𝐴) ⊆ 𝑌) | |
11 | elfilss 23602 | . . . . . 6 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌 ∖ 𝐴) ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
12 | 10, 11 | sylan2 591 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
13 | 9, 12 | bitr4d 281 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
14 | 13 | notbid 317 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
15 | 2, 14 | bitrid 282 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
16 | 1, 15 | bitrd 278 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 ‘cfv 6544 (class class class)co 7413 ↾t crest 17372 Filcfil 23571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-rest 17374 df-fbas 21143 df-fg 21144 df-fil 23572 |
This theorem is referenced by: fgtr 23616 trufil 23636 flimrest 23709 fclsrest 23750 cfilres 25046 relcmpcmet 25068 |
Copyright terms: Public domain | W3C validator |