MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Visualization version   GIF version

Theorem trfil3 23775
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))

Proof of Theorem trfil3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 trfil2 23774 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
2 dfral2 3081 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅)
3 nne 2929 . . . . . . . 8 (¬ (𝑣𝐴) ≠ ∅ ↔ (𝑣𝐴) = ∅)
4 filelss 23739 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → 𝑣𝑌)
5 reldisj 4416 . . . . . . . . 9 (𝑣𝑌 → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
64, 5syl 17 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
73, 6bitrid 283 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → (¬ (𝑣𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
87rexbidva 3155 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
98adantr 480 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
10 difssd 4100 . . . . . 6 (𝐴𝑌 → (𝑌𝐴) ⊆ 𝑌)
11 elfilss 23763 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌𝐴) ⊆ 𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
1210, 11sylan2 593 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
139, 12bitr4d 282 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ (𝑌𝐴) ∈ 𝐿))
1413notbid 318 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
152, 14bitrid 283 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
161, 15bitrd 279 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  cin 3913  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  t crest 17383  Filcfil 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-rest 17385  df-fbas 21261  df-fg 21262  df-fil 23733
This theorem is referenced by:  fgtr  23777  trufil  23797  flimrest  23870  fclsrest  23911  cfilres  25196  relcmpcmet  25218
  Copyright terms: Public domain W3C validator