Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim2ln Structured version   Visualization version   GIF version

Theorem tglowdim2ln 26441
 Description: There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglowdim2l.1 (𝜑𝐺DimTarskiG≥2)
tglowdim2ln.a (𝜑𝐴𝑃)
tglowdim2ln.b (𝜑𝐵𝑃)
tglowdim2ln.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tglowdim2ln (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Distinct variable groups:   𝐺,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐   𝐴,𝑐   𝐵,𝑐   𝐿,𝑐

Proof of Theorem tglowdim2ln
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglowdim2l.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
61, 2, 3, 4, 5tglowdim2l 26440 . . . 4 (𝜑 → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
76adantr 484 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
8 eleq1w 2898 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑧 ∈ (𝐴𝐿𝐵)))
9 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
10 simplr3 1214 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧𝑃)
118, 9, 10rspcdva 3611 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝐴𝐿𝐵))
124ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐺 ∈ TarskiG)
13 simplr1 1212 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑃)
14 simplr2 1213 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑃)
15 simpr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ¬ 𝑎 = 𝑏)
1615neqned 3021 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑏)
17 tglowdim2ln.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
1817ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝑃)
19 tglowdim2ln.b . . . . . . . . . . . 12 (𝜑𝐵𝑃)
2019ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐵𝑃)
21 tglowdim2ln.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2221ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝐵)
231, 2, 3, 12, 18, 20, 22tgelrnln 26420 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) ∈ ran 𝐿)
24 eleq1w 2898 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑎 ∈ (𝐴𝐿𝐵)))
2524, 9, 13rspcdva 3611 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (𝐴𝐿𝐵))
26 eleq1w 2898 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑏 ∈ (𝐴𝐿𝐵)))
2726, 9, 14rspcdva 3611 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (𝐴𝐿𝐵))
281, 2, 3, 12, 13, 14, 16, 16, 23, 25, 27tglinethru 26426 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) = (𝑎𝐿𝑏))
2911, 28eleqtrd 2918 . . . . . . . 8 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝑎𝐿𝑏))
3029ex 416 . . . . . . 7 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (¬ 𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3130orrd 860 . . . . . 6 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3231orcomd 868 . . . . 5 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3332ralrimivvva 3187 . . . 4 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
34 dfral2 3232 . . . . . . . 8 (∀𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3534ralbii 3160 . . . . . . 7 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
36 ralnex 3231 . . . . . . 7 (∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3735, 36bitri 278 . . . . . 6 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3837ralbii 3160 . . . . 5 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
39 ralnex 3231 . . . . 5 (∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4038, 39bitri 278 . . . 4 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4133, 40sylib 221 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
427, 41pm2.65da 816 . 2 (𝜑 → ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
43 rexnal 3233 . 2 (∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵) ↔ ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
4442, 43sylibr 237 1 (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ∃wrex 3134   class class class wbr 5052  ‘cfv 6343  (class class class)co 7145  2c2 11685  Basecbs 16479  TarskiGcstrkg 26220  DimTarskiG≥cstrkgld 26224  Itvcitv 26226  LineGclng 26227 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-fzo 13034  df-hash 13692  df-word 13863  df-concat 13919  df-s1 13946  df-s2 14206  df-s3 14207  df-trkgc 26238  df-trkgb 26239  df-trkgcb 26240  df-trkgld 26242  df-trkg 26243  df-cgrg 26301 This theorem is referenced by:  colperpex  26523  cgrg3col4  26643
 Copyright terms: Public domain W3C validator