MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim2ln Structured version   Visualization version   GIF version

Theorem tglowdim2ln 28677
Description: There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglowdim2l.1 (𝜑𝐺DimTarskiG≥2)
tglowdim2ln.a (𝜑𝐴𝑃)
tglowdim2ln.b (𝜑𝐵𝑃)
tglowdim2ln.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tglowdim2ln (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Distinct variable groups:   𝐺,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐   𝐴,𝑐   𝐵,𝑐   𝐿,𝑐

Proof of Theorem tglowdim2ln
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglowdim2l.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
61, 2, 3, 4, 5tglowdim2l 28676 . . . 4 (𝜑 → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
76adantr 480 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
8 eleq1w 2827 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑧 ∈ (𝐴𝐿𝐵)))
9 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
10 simplr3 1217 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧𝑃)
118, 9, 10rspcdva 3636 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝐴𝐿𝐵))
124ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐺 ∈ TarskiG)
13 simplr1 1215 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑃)
14 simplr2 1216 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑃)
15 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ¬ 𝑎 = 𝑏)
1615neqned 2953 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑏)
17 tglowdim2ln.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
1817ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝑃)
19 tglowdim2ln.b . . . . . . . . . . . 12 (𝜑𝐵𝑃)
2019ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐵𝑃)
21 tglowdim2ln.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2221ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝐵)
231, 2, 3, 12, 18, 20, 22tgelrnln 28656 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) ∈ ran 𝐿)
24 eleq1w 2827 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑎 ∈ (𝐴𝐿𝐵)))
2524, 9, 13rspcdva 3636 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (𝐴𝐿𝐵))
26 eleq1w 2827 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑏 ∈ (𝐴𝐿𝐵)))
2726, 9, 14rspcdva 3636 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (𝐴𝐿𝐵))
281, 2, 3, 12, 13, 14, 16, 16, 23, 25, 27tglinethru 28662 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) = (𝑎𝐿𝑏))
2911, 28eleqtrd 2846 . . . . . . . 8 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝑎𝐿𝑏))
3029ex 412 . . . . . . 7 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (¬ 𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3130orrd 862 . . . . . 6 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3231orcomd 870 . . . . 5 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3332ralrimivvva 3211 . . . 4 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
34 dfral2 3105 . . . . . . . 8 (∀𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3534ralbii 3099 . . . . . . 7 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
36 ralnex 3078 . . . . . . 7 (∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3735, 36bitri 275 . . . . . 6 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3837ralbii 3099 . . . . 5 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
39 ralnex 3078 . . . . 5 (∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4038, 39bitri 275 . . . 4 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4133, 40sylib 218 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
427, 41pm2.65da 816 . 2 (𝜑 → ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
43 rexnal 3106 . 2 (∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵) ↔ ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
4442, 43sylibr 234 1 (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  2c2 12348  Basecbs 17258  TarskiGcstrkg 28453  DimTarskiGcstrkgld 28457  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkgld 28478  df-trkg 28479  df-cgrg 28537
This theorem is referenced by:  colperpex  28759  cgrg3col4  28879
  Copyright terms: Public domain W3C validator