MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim2ln Structured version   Visualization version   GIF version

Theorem tglowdim2ln 26441
Description: There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglowdim2l.1 (𝜑𝐺DimTarskiG≥2)
tglowdim2ln.a (𝜑𝐴𝑃)
tglowdim2ln.b (𝜑𝐵𝑃)
tglowdim2ln.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tglowdim2ln (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Distinct variable groups:   𝐺,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐   𝐴,𝑐   𝐵,𝑐   𝐿,𝑐

Proof of Theorem tglowdim2ln
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglowdim2l.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
61, 2, 3, 4, 5tglowdim2l 26440 . . . 4 (𝜑 → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
76adantr 484 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
8 eleq1w 2898 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑧 ∈ (𝐴𝐿𝐵)))
9 simpllr 775 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
10 simplr3 1214 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧𝑃)
118, 9, 10rspcdva 3611 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝐴𝐿𝐵))
124ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐺 ∈ TarskiG)
13 simplr1 1212 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑃)
14 simplr2 1213 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑃)
15 simpr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ¬ 𝑎 = 𝑏)
1615neqned 3021 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑏)
17 tglowdim2ln.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
1817ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝑃)
19 tglowdim2ln.b . . . . . . . . . . . 12 (𝜑𝐵𝑃)
2019ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐵𝑃)
21 tglowdim2ln.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2221ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝐵)
231, 2, 3, 12, 18, 20, 22tgelrnln 26420 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) ∈ ran 𝐿)
24 eleq1w 2898 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑎 ∈ (𝐴𝐿𝐵)))
2524, 9, 13rspcdva 3611 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (𝐴𝐿𝐵))
26 eleq1w 2898 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑏 ∈ (𝐴𝐿𝐵)))
2726, 9, 14rspcdva 3611 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (𝐴𝐿𝐵))
281, 2, 3, 12, 13, 14, 16, 16, 23, 25, 27tglinethru 26426 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) = (𝑎𝐿𝑏))
2911, 28eleqtrd 2918 . . . . . . . 8 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝑎𝐿𝑏))
3029ex 416 . . . . . . 7 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (¬ 𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3130orrd 860 . . . . . 6 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3231orcomd 868 . . . . 5 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3332ralrimivvva 3187 . . . 4 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
34 dfral2 3232 . . . . . . . 8 (∀𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3534ralbii 3160 . . . . . . 7 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
36 ralnex 3231 . . . . . . 7 (∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3735, 36bitri 278 . . . . . 6 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3837ralbii 3160 . . . . 5 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
39 ralnex 3231 . . . . 5 (∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4038, 39bitri 278 . . . 4 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4133, 40sylib 221 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
427, 41pm2.65da 816 . 2 (𝜑 → ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
43 rexnal 3233 . 2 (∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵) ↔ ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
4442, 43sylibr 237 1 (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134   class class class wbr 5052  cfv 6343  (class class class)co 7145  2c2 11685  Basecbs 16479  TarskiGcstrkg 26220  DimTarskiGcstrkgld 26224  Itvcitv 26226  LineGclng 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-fzo 13034  df-hash 13692  df-word 13863  df-concat 13919  df-s1 13946  df-s2 14206  df-s3 14207  df-trkgc 26238  df-trkgb 26239  df-trkgcb 26240  df-trkgld 26242  df-trkg 26243  df-cgrg 26301
This theorem is referenced by:  colperpex  26523  cgrg3col4  26643
  Copyright terms: Public domain W3C validator