Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaeqsalv | Structured version Visualization version GIF version |
Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
Ref | Expression |
---|---|
imaeqsex.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsalv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeqsex.1 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | imaeqsexv 33678 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
4 | 3 | notbid 318 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | dfral2 3167 | . 2 ⊢ (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑) | |
6 | dfral2 3167 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∀wral 3066 ∃wrex 3067 ⊆ wss 3892 “ cima 5592 Fn wfn 6426 ‘cfv 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-fv 6439 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |