![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeqsalv | Structured version Visualization version GIF version |
Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
Ref | Expression |
---|---|
imaeqsex.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsalv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeqsex.1 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | imaeqsexv 7370 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
4 | 3 | notbid 317 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | dfral2 3088 | . 2 ⊢ (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑) | |
6 | dfral2 3088 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 “ cima 5681 Fn wfn 6544 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 |
This theorem is referenced by: negsunif 28013 negsbdaylem 28014 |
Copyright terms: Public domain | W3C validator |