MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsalv Structured version   Visualization version   GIF version

Theorem imaeqsalv 7353
Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.)
Hypothesis
Ref Expression
imaeqsex.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsalv ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsalv
StepHypRef Expression
1 imaeqsex.1 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = (𝐹𝑦) → (¬ 𝜑 ↔ ¬ 𝜓))
32imaeqsexv 7352 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ∃𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓))
5 dfral2 3091 . 2 (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑)
6 dfral2 3091 . 2 (∀𝑦𝐵 𝜓 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wral 3053  wrex 3062  wss 3940  cima 5669   Fn wfn 6528  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541
This theorem is referenced by:  negsunif  27882  negsbdaylem  27883
  Copyright terms: Public domain W3C validator