Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrel6 Structured version   Visualization version   GIF version

Theorem dfrel6 37216
Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019.)
Assertion
Ref Expression
dfrel6 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)

Proof of Theorem dfrel6
StepHypRef Expression
1 dfrel5 37215 . 2 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
2 dfres3 5987 . . 3 (𝑅 ↾ dom 𝑅) = (𝑅 ∩ (dom 𝑅 × ran 𝑅))
32eqeq1i 2738 . 2 ((𝑅 ↾ dom 𝑅) = 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
41, 3bitri 275 1 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  cin 3948   × cxp 5675  dom cdm 5677  ran crn 5678  cres 5679  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  cnvref4  37219  elrels6  37360  dfrefrel2  37385  dfcnvrefrel2  37400  dfsymrel2  37419  dftrrel2  37447
  Copyright terms: Public domain W3C validator