Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrel6 Structured version   Visualization version   GIF version

Theorem dfrel6 38336
Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019.)
Assertion
Ref Expression
dfrel6 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)

Proof of Theorem dfrel6
StepHypRef Expression
1 dfrel5 38335 . 2 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
2 dfres3 5958 . . 3 (𝑅 ↾ dom 𝑅) = (𝑅 ∩ (dom 𝑅 × ran 𝑅))
32eqeq1i 2735 . 2 ((𝑅 ↾ dom 𝑅) = 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
41, 3bitri 275 1 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3916   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  cnvref4  38339  elrels6  38488  dfrefrel2  38513  dfcnvrefrel2  38528  dfsymrel2  38547  dftrrel2  38575
  Copyright terms: Public domain W3C validator