Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfres4 Structured version   Visualization version   GIF version

Theorem dfres4 38254
Description: Alternate definition of the restriction of a class. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
dfres4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))

Proof of Theorem dfres4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfres2 6001 . 2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
2 inxprnres 38253 . 2 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
31, 2eqtr4i 2755 1 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3910   class class class wbr 5102  {copab 5164   × cxp 5629  ran crn 5632  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643
This theorem is referenced by:  xrnres4  38364  xrnresex  38365
  Copyright terms: Public domain W3C validator