Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfres4 Structured version   Visualization version   GIF version

Theorem dfres4 38242
Description: Alternate definition of the restriction of a class. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
dfres4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))

Proof of Theorem dfres4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfres2 6065 . 2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
2 inxprnres 38241 . 2 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
31, 2eqtr4i 2771 1 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  cin 3975   class class class wbr 5166  {copab 5228   × cxp 5693  ran crn 5696  cres 5697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-dm 5705  df-rn 5706  df-res 5707
This theorem is referenced by:  xrnres4  38354  xrnresex  38355
  Copyright terms: Public domain W3C validator