Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfres4 Structured version   Visualization version   GIF version

Theorem dfres4 38341
Description: Alternate definition of the restriction of a class. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
dfres4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))

Proof of Theorem dfres4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfres2 5989 . 2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
2 inxprnres 38340 . 2 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
31, 2eqtr4i 2757 1 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  cin 3896   class class class wbr 5089  {copab 5151   × cxp 5612  ran crn 5615  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  xrnres4  38462  xrnresex  38463
  Copyright terms: Public domain W3C validator