Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxprnres Structured version   Visualization version   GIF version

Theorem inxprnres 38250
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
inxprnres (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxprnres
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5838 . 2 Rel (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
2 relopabv 5845 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 eleq1w 2827 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
4 breq1 5169 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
53, 4anbi12d 631 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
6 breq2 5170 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
76anbi2d 629 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
85, 7opelopabg 5557 . . . 4 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤)))
98el2v 3495 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
10 brinxprnres 38249 . . . 4 (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤)))
1110elv 3493 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤))
12 df-br 5167 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))))
139, 11, 123bitr2ri 300 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
141, 2, 13eqrelriiv 5814 1 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  cop 4654   class class class wbr 5166  {copab 5228   × cxp 5698  ran crn 5701  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  dfres4  38251
  Copyright terms: Public domain W3C validator