| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxprnres | Structured version Visualization version GIF version | ||
| Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.) |
| Ref | Expression |
|---|---|
| inxprnres | ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5754 | . 2 ⊢ Rel (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
| 2 | relopabv 5761 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
| 3 | eleq1w 2814 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 4 | breq1 5094 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
| 6 | breq2 5095 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
| 7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
| 8 | 5, 7 | opelopabg 5478 | . . . 4 ⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
| 9 | 8 | el2v 3443 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 10 | brinxprnres 38331 | . . . 4 ⊢ (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) | |
| 11 | 10 | elv 3441 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 12 | df-br 5092 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))) | |
| 13 | 9, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
| 14 | 1, 2, 13 | eqrelriiv 5730 | 1 ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 〈cop 4582 class class class wbr 5091 {copab 5153 × cxp 5614 ran crn 5617 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 |
| This theorem is referenced by: dfres4 38333 |
| Copyright terms: Public domain | W3C validator |