Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxprnres | Structured version Visualization version GIF version |
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.) |
Ref | Expression |
---|---|
inxprnres | ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5721 | . 2 ⊢ Rel (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
2 | relopabv 5728 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | eleq1w 2822 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
4 | breq1 5081 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
5 | 3, 4 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
6 | breq2 5082 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
7 | 6 | anbi2d 628 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
8 | 5, 7 | opelopabg 5452 | . . . 4 ⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
9 | 8 | el2v 3438 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
10 | brinxprnres 36405 | . . . 4 ⊢ (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) | |
11 | 10 | elv 3436 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
12 | df-br 5079 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))) | |
13 | 9, 11, 12 | 3bitr2ri 299 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
14 | 1, 2, 13 | eqrelriiv 5697 | 1 ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 〈cop 4572 class class class wbr 5078 {copab 5140 × cxp 5586 ran crn 5589 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 |
This theorem is referenced by: dfres4 36407 |
Copyright terms: Public domain | W3C validator |