| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxprnres | Structured version Visualization version GIF version | ||
| Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.) |
| Ref | Expression |
|---|---|
| inxprnres | ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5760 | . 2 ⊢ Rel (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
| 2 | relopabv 5767 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
| 3 | eleq1w 2816 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 4 | breq1 5098 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
| 6 | breq2 5099 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
| 7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
| 8 | 5, 7 | opelopabg 5483 | . . . 4 ⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
| 9 | 8 | el2v 3444 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 10 | brinxprnres 38352 | . . . 4 ⊢ (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) | |
| 11 | 10 | elv 3442 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 12 | df-br 5096 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))) | |
| 13 | 9, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
| 14 | 1, 2, 13 | eqrelriiv 5736 | 1 ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 〈cop 4583 class class class wbr 5095 {copab 5157 × cxp 5619 ran crn 5622 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 |
| This theorem is referenced by: dfres4 38354 |
| Copyright terms: Public domain | W3C validator |