Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxprnres Structured version   Visualization version   GIF version

Theorem inxprnres 38288
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
inxprnres (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxprnres
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5831 . 2 Rel (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
2 relopabv 5838 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 eleq1w 2824 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
4 breq1 5154 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
53, 4anbi12d 632 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
6 breq2 5155 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
76anbi2d 630 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
85, 7opelopabg 5552 . . . 4 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤)))
98el2v 3488 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
10 brinxprnres 38287 . . . 4 (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤)))
1110elv 3486 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤))
12 df-br 5152 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))))
139, 11, 123bitr2ri 300 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
141, 2, 13eqrelriiv 5807 1 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cin 3965  cop 4640   class class class wbr 5151  {copab 5213   × cxp 5691  ran crn 5694  cres 5695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705
This theorem is referenced by:  dfres4  38289
  Copyright terms: Public domain W3C validator