![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxprnres | Structured version Visualization version GIF version |
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.) |
Ref | Expression |
---|---|
inxprnres | ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5831 | . 2 ⊢ Rel (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
2 | relopabv 5838 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | eleq1w 2824 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
4 | breq1 5154 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
5 | 3, 4 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
6 | breq2 5155 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
8 | 5, 7 | opelopabg 5552 | . . . 4 ⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
9 | 8 | el2v 3488 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
10 | brinxprnres 38287 | . . . 4 ⊢ (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) | |
11 | 10 | elv 3486 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
12 | df-br 5152 | . . 3 ⊢ (𝑧(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))) | |
13 | 9, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
14 | 1, 2, 13 | eqrelriiv 5807 | 1 ⊢ (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∩ cin 3965 〈cop 4640 class class class wbr 5151 {copab 5213 × cxp 5691 ran crn 5694 ↾ cres 5695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 |
This theorem is referenced by: dfres4 38289 |
Copyright terms: Public domain | W3C validator |