![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrn6 | Structured version Visualization version GIF version |
Description: Alternate definition of range. (Contributed by Peter Mazsa, 1-Aug-2018.) |
Ref | Expression |
---|---|
dfrn6 | ⊢ ran 𝑅 = {𝑥 ∣ [𝑥]◡𝑅 ≠ ∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5685 | . 2 ⊢ ran 𝑅 = dom ◡𝑅 | |
2 | dfdm6 37107 | . 2 ⊢ dom ◡𝑅 = {𝑥 ∣ [𝑥]◡𝑅 ≠ ∅} | |
3 | 1, 2 | eqtri 2761 | 1 ⊢ ran 𝑅 = {𝑥 ∣ [𝑥]◡𝑅 ≠ ∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2710 ≠ wne 2941 ∅c0 4320 ◡ccnv 5673 dom cdm 5674 ran crn 5675 [cec 8696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-br 5147 df-opab 5209 df-xp 5680 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8700 |
This theorem is referenced by: rnxrn 37205 |
Copyright terms: Public domain | W3C validator |