Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrn6 Structured version   Visualization version   GIF version

Theorem dfrn6 37108
Description: Alternate definition of range. (Contributed by Peter Mazsa, 1-Aug-2018.)
Assertion
Ref Expression
dfrn6 ran 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Distinct variable group:   𝑥,𝑅

Proof of Theorem dfrn6
StepHypRef Expression
1 df-rn 5685 . 2 ran 𝑅 = dom 𝑅
2 dfdm6 37107 . 2 dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
31, 2eqtri 2761 1 ran 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {cab 2710  wne 2941  c0 4320  ccnv 5673  dom cdm 5674  ran crn 5675  [cec 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-sn 4627  df-pr 4629  df-op 4633  df-br 5147  df-opab 5209  df-xp 5680  df-cnv 5682  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ec 8700
This theorem is referenced by:  rnxrn  37205
  Copyright terms: Public domain W3C validator