Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnvepres Structured version   Visualization version   GIF version

Theorem rncnvepres 38298
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
rncnvepres ran ( E ↾ 𝐴) = 𝐴

Proof of Theorem rncnvepres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnopab 5921 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
2 cnvepres 38293 . . 3 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
32rneqi 5904 . 2 ran ( E ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
4 dfuni2 4876 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
5 df-rex 3055 . . . 4 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥(𝑥𝐴𝑦𝑥))
65abbii 2797 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
74, 6eqtri 2753 . 2 𝐴 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
81, 3, 73eqtr4i 2763 1 ran ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054   cuni 4874  {copab 5172   E cep 5540  ccnv 5640  ran crn 5642  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  dm1cosscnvepres  38454
  Copyright terms: Public domain W3C validator