Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnvepres Structured version   Visualization version   GIF version

Theorem rncnvepres 36439
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
rncnvepres ran ( E ↾ 𝐴) = 𝐴

Proof of Theorem rncnvepres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnopab 5863 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
2 cnvepres 36433 . . 3 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
32rneqi 5846 . 2 ran ( E ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
4 dfuni2 4841 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
5 df-rex 3070 . . . 4 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥(𝑥𝐴𝑦𝑥))
65abbii 2808 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
74, 6eqtri 2766 . 2 𝐴 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
81, 3, 73eqtr4i 2776 1 ran ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wrex 3065   cuni 4839  {copab 5136   E cep 5494  ccnv 5588  ran crn 5590  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  dm1cosscnvepres  36574
  Copyright terms: Public domain W3C validator