![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnvepres | Structured version Visualization version GIF version |
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
rncnvepres | ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5943 | . 2 ⊢ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | cnvepres 37657 | . . 3 ⊢ (◡ E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
3 | 2 | rneqi 5926 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
4 | dfuni2 4901 | . . 3 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | df-rex 3063 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
6 | 5 | abbii 2794 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
7 | 4, 6 | eqtri 2752 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
8 | 1, 3, 7 | 3eqtr4i 2762 | 1 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2701 ∃wrex 3062 ∪ cuni 4899 {copab 5200 E cep 5569 ◡ccnv 5665 ran crn 5667 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-eprel 5570 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 |
This theorem is referenced by: dm1cosscnvepres 37816 |
Copyright terms: Public domain | W3C validator |