Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnvepres Structured version   Visualization version   GIF version

Theorem rncnvepres 37662
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
rncnvepres ran ( E ↾ 𝐴) = 𝐴

Proof of Theorem rncnvepres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnopab 5943 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
2 cnvepres 37657 . . 3 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
32rneqi 5926 . 2 ran ( E ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
4 dfuni2 4901 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
5 df-rex 3063 . . . 4 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥(𝑥𝐴𝑦𝑥))
65abbii 2794 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
74, 6eqtri 2752 . 2 𝐴 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
81, 3, 73eqtr4i 2762 1 ran ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wex 1773  wcel 2098  {cab 2701  wrex 3062   cuni 4899  {copab 5200   E cep 5569  ccnv 5665  ran crn 5667  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678
This theorem is referenced by:  dm1cosscnvepres  37816
  Copyright terms: Public domain W3C validator