Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnvepres Structured version   Visualization version   GIF version

Theorem rncnvepres 38347
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
rncnvepres ran ( E ↾ 𝐴) = 𝐴

Proof of Theorem rncnvepres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnopab 5899 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
2 cnvepres 38342 . . 3 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
32rneqi 5882 . 2 ran ( E ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
4 dfuni2 4860 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
5 df-rex 3057 . . . 4 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥(𝑥𝐴𝑦𝑥))
65abbii 2798 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
74, 6eqtri 2754 . 2 𝐴 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦𝑥)}
81, 3, 73eqtr4i 2764 1 ran ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056   cuni 4858  {copab 5155   E cep 5518  ccnv 5618  ran crn 5620  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  dm1cosscnvepres  38564
  Copyright terms: Public domain W3C validator