![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnvepres | Structured version Visualization version GIF version |
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
rncnvepres | ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5968 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | cnvepres 38280 | . . 3 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
3 | 2 | rneqi 5951 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
4 | dfuni2 4914 | . . 3 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
6 | 5 | abbii 2807 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
7 | 4, 6 | eqtri 2763 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
8 | 1, 3, 7 | 3eqtr4i 2773 | 1 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ∪ cuni 4912 {copab 5210 E cep 5588 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 |
This theorem is referenced by: dm1cosscnvepres 38438 |
Copyright terms: Public domain | W3C validator |