![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnvepres | Structured version Visualization version GIF version |
Description: The range of the restricted converse epsilon is the union of the restriction. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
rncnvepres | ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5979 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | cnvepres 38254 | . . 3 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
3 | 2 | rneqi 5962 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
4 | dfuni2 4933 | . . 3 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
5 | df-rex 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
6 | 5 | abbii 2812 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
7 | 4, 6 | eqtri 2768 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
8 | 1, 3, 7 | 3eqtr4i 2778 | 1 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ∪ cuni 4931 {copab 5228 E cep 5598 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: dm1cosscnvepres 38412 |
Copyright terms: Public domain | W3C validator |