Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrel3 | Structured version Visualization version GIF version |
Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
dftrrel3 | ⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrrel2 36791 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
2 | cotr 6030 | . . 3 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
3 | 2 | anbi1i 625 | . 2 ⊢ (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 275 | 1 ⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 ⊆ wss 3892 class class class wbr 5081 ∘ ccom 5604 Rel wrel 5605 TrRel wtrrel 36396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-trrel 36788 |
This theorem is referenced by: trrelressn 36797 dfeqvrel3 36805 |
Copyright terms: Public domain | W3C validator |