Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrel3 Structured version   Visualization version   GIF version

Theorem dftrrel3 34811
 Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
dftrrel3 ( TrRel 𝑅 ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dftrrel3
StepHypRef Expression
1 dftrrel2 34810 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
2 cotr 5724 . . 3 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
32anbi1i 618 . 2 (((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅))
41, 3bitri 267 1 ( TrRel 𝑅 ↔ (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385  ∀wal 1651   ⊆ wss 3768   class class class wbr 4842   ∘ ccom 5315  Rel wrel 5316   TrRel wtrrel 34477 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pr 5096 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-br 4843  df-opab 4905  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-trrel 34807 This theorem is referenced by:  dfeqvrel3  34822
 Copyright terms: Public domain W3C validator